Dr. Zahra Beheshti | AI in Engineering | Best Researcher Award

Dr. Zahra Beheshti | AI in Engineering | Best Researcher Award

Dr. Zahra Beheshti | Islamic Azad University | Iran

Dr. Zahra Beheshti is an Assistant Professor at the Islamic Azad University, Najafabad Branch, with a distinguished background in computer engineering and artificial intelligence. She holds a B.Sc. and M.Sc. in Computer Engineering (Software) and a Ph.D. in Computer Science with a focus on Artificial Intelligence, followed by postdoctoral research in Soft Computing. Dr. Beheshti has made significant contributions to the field, including the compilation of the book Centripetal Accelerated Particle Swarm Optimization and Applications. Her academic excellence has been recognized through scholarships awarded to top international Ph.D. students. She is actively involved in knowledge dissemination, having conducted multiple workshops on advanced topics such as Machine Learning, Fuzzy Expert Systems and their application in algorithm parameter determination, and Introduction to Fuzzy Logic along with the Design and Implementation of Fuzzy Expert Systems. Her research output includes 34 documents, cited 1,865 times by 1,698 publications, with an h-index of 20, reflecting the significant impact of her work. Through her teaching, research, and publications, Dr. Beheshti demonstrates a strong commitment to advancing computational intelligence, fostering innovation, and mentoring the next generation of researchers in AI and soft computing, combining both academic rigor and practical application.

Profile: Scopus | Google Scholar | Orcid

Featured Publications

  • Z Beheshti, SMH Shamsuddin, A review of population-based meta-heuristic algorithms, Int. J. Adv. Soft Comput. Appl 5 (1), 1-35, 744 citations, 2013

  • H Abedinpourshotorban, SM Shamsuddin, Z Beheshti, DNA Jawawi, Electromagnetic field optimization: a physics-inspired metaheuristic optimization algorithm, Swarm and Evolutionary Computation 26, 8-22, 414 citations, 2016

  • M Jafarzadegan, F Safi-esfahani, Z Beheshti, Combining Hierarchical Clustering approaches using the PCA Method, Expert Systems with Applications 137, 1-10, 156 citations, 2019

  • Z Beheshti, SM Shamsuddin, S Hasan, Memetic binary particle swarm optimization for discrete optimization problems, Information Sciences 299, 58-84, 129 citations, 2015

  • Z Beheshti, SMH Shamsuddin, CAPSO: centripetal accelerated particle swarm optimization, Information Sciences 258, 54-79, 120 citations, 2014

  • M Banaie-Dezfouli, MH Nadimi-Shahraki, Z Beheshti, R-GWO: Representative-based grey wolf optimizer for solving engineering problems, Applied Soft Computing 106, 1-28, 108 citations, 2021

 

 

Dr. Bin Zhang | Structural Engineering | Best Researcher Award

Dr. Bin Zhang | Structural Engineering | Best Researcher Award

Dr. Bin Zhang | Chongqing University of Science and Technology | China

Dr. Bin Zhang holds a Doctorate in Engineering and has completed postdoctoral research. He is a lecturer and masterโ€™s supervisor in the Department of Road and Bridge Engineering, School of Civil and Hydraulic Engineering, and a youth committee member of the World Transport Convention. His research focuses on the dynamic characteristics of underground and tunnel structures, the development of new materials and technologies for structural reinforcement, and intelligent monitoring of structural health. His research output includes 26 documents, 171 citations, 146 citing documents, and an h-index of 8. He teaches both undergraduate and postgraduate courses, including Tunnel Engineering, Engineering Surveying, Tunnel Mechanics, and Frontier Technologies in Civil Engineering, integrating theoretical knowledge with practical applications to advance innovation in civil and tunnel engineering. Additionally, he has developed advanced experimental methods for studying tunnel lining mechanics, contributing to safer and more efficient tunnel design practices.

Profile: Scopus | Orcid

Featured Publications

  • Study on the Stability of Buildings During Excavation in Urban Core Areas, Applied Sciences, 2025. Contributors: Kang Liu, Huafeng Liu, Yuntai Gao, Zijian Wang, Yunchuan Wang, Qi Liu, Chaolin Jia, Zihang Huang, Bin Zhang.

  • Experimental Study on Mechanical Differences Between Prefabricated and Cast-In Situ Tunnel Linings Based on a Load-Structure Model, Buildings, 2025. Contributors: Li-Ming Wu, Hong-Kun Li, Feng Gao, Zi-Jian Wang, Bin Zhang, Wen-Jie Luo, Jun-Jie Li.

  • Mechanical Properties of Steel Fiber-Reinforced Concrete Tunnel Secondary Lining Structure and Optimization of Support Parameters, Buildings, 2025. Contributors: Zijian Wang, Yunchuan Wang, Xiaorong Wang, Baosheng Rong, Bin Zhang, Liming Wu, Chaolin Jia, Zihang Huang.

  • Crystallization Blockage in Highway Tunnel Drainage System Based on Molecular Dynamics, AIP Advances, 2025. Contributors: Shiyang Liu, Xuefu Zhang, Bin Zhang.

  • Experimental Study on Grouting Diffusion Law of Tunnel Secondary Lining Cracks Based on Different Slurry Viscosities, Applied Sciences, 2025. Contributors: Bin Zhang, Peng Liu, Yi Wu, Liming Wu, Chen Li, Shiyang Liu, Yuanfu Zhou.

  • Experimental Study on Grouting Diffusion Law of the Different Crack Widths in Tunnel Lining, KSCE Journal of Civil Engineering, 2023. Contributors: Bin Zhang, Yuanfu Zhou, Xuefu Zhang, Zijian Wang, Wei Yang, Yixuan Ban.

  • Anti Crystallization Blocking of Flocking Drainage Pipe Based on Natural Phenomenon, Materials Science, 2022. Contributors: Xuefu Zhang, Shiyang Liu, Feng Gao, Yuanfu Zhou, Bin Zhang.

Dr. Mulugundam Siva Surya | Advanced Composites | Best Researcher Award

Dr. Mulugundam Siva Surya | Advanced Composites | Best Researcher Award

Dr. Mulugundam Siva Surya | GITAM University | India

Dr. Mulugundam Siva Surya is an accomplished academic and researcher currently serving as an Assistant Professor at GITAM University, Hyderabad, with a strong commitment to teaching and advancing research in mechanical and manufacturing engineering. He earned his PhD from JNTU Anantapur in 2022, following an M.Tech in Manufacturing Engineering from the National Institute of Technology, Warangal, and a B.Tech in Mechanical Engineering from KSRM College of Engineering, Kadapa. Dr. Mulugundam began his academic career as a Lecturer in the Mechanical Engineering Department at Rajiv Gandhi University, Hyderabad, from 2010 to 2013, and has since been dedicated to mentoring students and contributing to innovative research. With 557 citations from 421 documents, 33 publications, and an h-index of 16, his work reflects a strong impact in mechanical and materials engineering. [Scopus ID: 57194031396; ORCID: 0000-0003-2960-7298]. His research expertise includes composite materials, functionally graded materials, and thermal protection systems. He holds an Indian patent (No. 468849) for developing a novel method to fabricate layered Al7075/SiC functionally graded materials using powder metallurgy. He has also served as Co-Principal Investigator for two DRDO-funded projects under the CARS scheme, focusing on experimental and finite element design optimization of epoxy-based composites and AI-driven multi-scale simulations of ablative thermal protection systems for missile nose cones.

Profile: Scopus | Google Scholar | Orcid

Featured Publications

Mulugundam, M. S., & Gugulothu, S. K. (2023). Fabrication, mechanical and wear characterization of silicon carbide reinforced aluminium 7075 metal matrix composite. Silicon, 14(5), 2023โ€“2032.

Nutakki, P. K., Gugulothu, S. K., Ramachander, J., & Sivasurya, M. (2022). Effect of n-amyl alcohol/biodiesel blended nano additives on the performance, combustion and emission characteristics of CRDi diesel engine. Environmental Science and Pollution Research, 29(1), 82โ€“97.

Ramachander, J., Gugulothu, S. K., Sastry, G. R. K., Panda, J. K., & Surya, M. S. (2021). Performance and emission predictions of a CRDI engine powered with diesel fuel: A combined study of injection parameters variation and Box-Behnken response surface methodology. Fuel, 290, 120069.

Surya, M. S., Prasanthi, G., & Gugulothu, S. K. (2021). Investigation of mechanical and wear behaviour of Al7075/SiC composites using response surface methodology. Silicon, 13(7), 2369โ€“2379.

Surya, M. S., & Prasanthi, G. (2022). Effect of SiC weight percentage on tribological characteristics of Al7075/SiC composites. Silicon, 14(3), 1083โ€“1092.

Mulugundam, T. V. N. Siva Surya. (2019). Synthesis and mechanical behaviour of (Al/SiC) functionally graded material using powder metallurgy technique. Materials Today: Proceedings, 18(7), 3501โ€“3506.

Prof. Ouajdi Korbaa | AI in Engineering | Innovative Research Award

Prof. Ouajdi Korbaa | AI in Engineering | Innovative Research Award

Prof. Ouajdi Korbaa | University of Sousse | Tunisia

Prof. Ouajdi Korbaa is a distinguished researcher and professor at the Institute of Computer Science and Communication Techniques, University of Sousse, Tunisia, and a member of the Modeling of Automated Reasoning Systems Laboratory. His research focuses on modeling, discrete optimization, scheduling, and artificial intelligence, contributing significantly to the development of advanced methodologies in these areas. He has supervised numerous Masterโ€™s and PhD students and actively participates in academic juries, reflecting his commitment to mentoring the next generation of researchers. Prof. Korbaa has authored 157 documents cited by 998 sources, achieving an h-index of 18, demonstrating his strong impact and influence in the field. His work integrates theoretical foundations with practical applications, advancing computational techniques for problem-solving and decision-making. Recognized for his expertise in optimization and AI, he has made substantial contributions to both the academic community and the broader field of computer science, fostering innovation in modeling and automated reasoning systems.

Profile: Scopus | Google Scholar | Orcid

Featured Publications

  • Nssibi, M., Manita, G., & Korbaa, O. (2023). Advances in nature-inspired metaheuristic optimization for feature selection problem: A comprehensive survey. Computer Science Review, 49, 100559.

  • Jemili, F., Meddeb, R., & Korbaa, O. (2024). Intrusion detection based on ensemble learning for big data classification. Cluster Computing, 27(3), 3771โ€“3798.

  • Benzarti, S., Triki, B., & Korbaa, O. (2017). A survey on attacks in Internet of Things based networks. In Proceedings of the 2017 International Conference on Engineering & MIS (ICEMIS) (pp. 1โ€“7).

  • Meddeb, R., Jemili, F., Triki, B., & Korbaa, O. (2023). A deep learning-based intrusion detection approach for mobile Ad-hoc network. Soft Computing, 27(14), 9425โ€“9439.

  • Abid, A., Jemili, F., & Korbaa, O. (2024). Real-time data fusion for intrusion detection in industrial control systems based on cloud computing and big data techniques. Cluster Computing, 27(2), 2217โ€“2238.

  • Korbaa, O., Camus, H., & Gentina, J. C. (1997). FMS cyclic scheduling with overlapping production cycles. In Proceedings of the 18th International Conference on Application and Theory of Automation in Technology (pp. 1โ€“10).

  • Lee, J., & Korbaa, O. (2004). Modeling and scheduling of ratio-driven FMS using unfolding time Petri nets. Computers & Industrial Engineering, 46(4), 639โ€“653.

  • Meddeb, R., Triki, B., Jemili, F., & Korbaa, O. (2017). A survey of attacks in mobile ad hoc networks. In Proceedings of the 2017 International Conference on Engineering & MIS (ICEMIS) (pp. 1โ€“7).

 

Dr. Goutam Khankari | Sustainable Engineering | Best Researcher Award

Dr. Goutam Khankari | Sustainable Engineering | Best Researcher Award

Dr. Goutam Khankari | Damodar Valley Corporation | India

Dr. Goutam Khankari is a distinguished researcher and engineer specializing in thermal power systems. His PhD research, titled โ€œThermodynamic Analysis and Performance Improvement of Coal-Fired Thermal Power Plants,โ€ focused on a comprehensive 4-E approachโ€”Energy, Exergy, Environment, and Economic analysisโ€”of various coal-fired steam power plants using high-ash Indian coals. The primary objective of his work was to enhance the overall efficiency and net power output of these plants by exploiting low-grade waste energy through the Kalina Cycle System, integrating solar energy, and optimizing operational conditions. Dr. Khankariโ€™s research not only provides critical insights into energy and exergy efficiencies but also emphasizes sustainable practices and environmental considerations in coal-based power generation. His work has been widely recognized, reflected in 97 citations across 88 documents and an h-index of 5, demonstrating significant academic influence. Through his innovative approaches to performance improvement and waste energy utilization, Dr. Khankari has contributed meaningfully to the field of thermal engineering, offering practical solutions for maximizing energy output while minimizing environmental impact in Indiaโ€™s coal-fired power sector.

Profile: Scopus | Google Scholar

Featuredย  Publications

Khankari, G., & Karmakar, S. (2016). Power generation from coal mill rejection using Kalina cycle. Journal of Energy Resources Technology, 138(5), 052004.

Khankari, G., Munda, J., & Karmakar, S. (2016). Power generation from condenser waste heat in coal-fired thermal power plant using Kalina cycle. Energy Procedia, 90, 613โ€“624.

Khankari, G., & Karmakar, S. (2018). Power generation from fluegas waste heat in a 500 MWe subcritical coal-fired thermal power plant using solar assisted Kalina Cycle System 11. Applied Thermal Engineering, 138, 235โ€“245.

Khankari, G., & Karmakar, S. (2021). A novel solar assisted Kalina cycle system for waste heat utilization in thermal power plants. International Journal of Energy Research, 45(12), 17146โ€“17158.

Roge, N. H., Khankari, G., & Karmakar, S. (2022). Waste heat recovery from fly ash of 210 MW coal fired power plant using organic rankine cycle. Journal of Energy Resources Technology, 144(8), 082107.

Khankari, G., & Karmakar, S. (2014). Operational optimization of turbo-generator (TG) cycle of a 500MW coal-fired thermal power plant. In 2014 6th IEEE Power India International Conference (PIICON) (pp. 1โ€“6).

Khankari, G., Karmakar, S., Pramanick, A., & Biswas, M. (2013). Thermodynamic analysis of a 500MW coal-fired Indian power plant. In ESMOC Conference, NIT Durgapur, India.

Mr. Andreas Fezer | Data Driven Engineering | Best Researcher Award

Mr. Andreas Fezer | Data Driven Engineering | Best Researcher Award

Mr. Andreas Fezer | Materials Testing Institute, University of Stuttgart | Germany

Mr. Andreas Fezer is a Scientific Associate at the Materials Testing Institute, University of Stuttgart, Germany, specializing in joining technology and additive manufacturing. He holds both bachelorโ€™s and masterโ€™s degrees in mechanical engineering from the University of Stuttgart. Since joining the institute, he has contributed to advanced research on resistance spot welding, aluminum alloys, and the integration of experimental and machine learning approaches in welding technology. His published works focus on improving manufacturing efficiency and material performance. With expertise spanning mechanical engineering fundamentals and applied welding processes, Mr. Fezer plays an active role in advancing industrial materials testing and innovative manufacturing solutions.

Professional Profile

Orcid

Education and Experience

Mr. Andreas Fezer earned his bachelorโ€™s and masterโ€™s degrees in mechanical engineering from the University of Stuttgart, Germany. Following his academic training, he began his professional career at the Materials Testing Institute, University of Stuttgart, where he works as a Scientific Associate in the Department of Joining Technology and Additive Manufacturing. His work involves both experimental and computational research, focusing on welding processes, material resistance evaluation, and the development of innovative manufacturing techniques. Through his combined academic background and applied industrial research, Mr. Fezer contributes to the advancement of materials engineering and welding technologies in both academic and industrial contexts.

Summary Suitability

Mr. Andreas Fezer is an outstanding candidate for the Best Researcher Award due to his significant contributions to advanced materials testing and welding technology. As a Scientific Associate at the Materials Testing Institute, University of Stuttgart, he has demonstrated expertise in joining technology and additive manufacturing, focusing on aluminum alloys and resistance spot welding processes. His work combines experimental investigations with innovative machine learning techniques, enabling improved understanding of dynamic resistance and contact behavior in metal joining.

Professional Developmentย 

Mr. Andreas Fezer has cultivated expertise in resistance spot welding, aluminum alloy characterization, and additive manufacturing processes. He engages in collaborative research integrating experimental methods with machine learning to improve process understanding and efficiency in manufacturing. His professional growth has been shaped by active participation in scientific publications, interdisciplinary teamwork, and applied research projects that connect engineering theory with industrial practice. Working within the renowned Materials Testing Institute at the University of Stuttgart has allowed him to refine his analytical, problem-solving, and technical skills, positioning him as a valuable contributor to innovation in mechanical engineering and materials science.

Research Focusย 

Mr. Andreas Fezerโ€™s research is centered on welding technology, particularly resistance spot welding of aluminum alloys used in automotive and structural applications. His work addresses both the physical phenomena involved in material joining and the development of methods for evaluating contact and bulk resistance in metals. He explores dynamic resistance behavior using a combination of laboratory experimentation and machine learning techniques, aiming to enhance process reliability, material performance, and production efficiency. His research focus falls under the category of advanced manufacturing and materials engineering, with an emphasis on joining processes, welding quality control, and the integration of data-driven approaches in manufacturing.

Awards and Honors

Mr. Andreas Fezerโ€™s professional recognition is reflected in his contributions to peer-reviewed scientific publications and his role in advancing welding technology research. His work has appeared in reputable international journals, showcasing the impact and quality of his studies in materials testing and manufacturing innovation. Through collaborative projects and research dissemination, he has earned professional respect within the mechanical engineering and materials science community. His achievements underscore his reputation as a researcher whose work supports both academic advancement and industrial application in the field of joining technology and additive manufacturing.

Publication Top Notes

Title: Method for Determining the Contact and Bulk Resistance of Aluminum Alloys in the Initial State for Resistance Spot Welding
Year: 2025

Title: Experimental and Machine Learning Investigation of Dynamic Resistance in Aluminum Resistance Spot Welding for the Body-in-White
Year: 2025

Conclusion

Mr. Andreas Fezerโ€™s innovative research, combining experimental methods and machine learning in welding technology, has made a significant impact on materials science and manufacturing. His work demonstrates technical excellence, practical relevance, and academic rigor, establishing him as a leading researcher in his field. His contributions to understanding and improving aluminum resistance spot welding processes highlight both his scientific insight and his ability to drive industrial innovation, making him exceptionally deserving of the Best Researcher Award.

 

Dr. Bahram Ahadi | 3D concrete printing | Best Researcher Award

Dr. Bahram Ahadi | 3D concrete printing | Best Researcher Award

Dr. Bahram Ahadi , Universidad Politรฉcnica de Madrid , Iran.

Dr. Bahram Ahadi ๐ŸŽ“ is a dedicated PhD candidate in Civil Engineering at the Polytechnic University of Madrid ๐Ÿ‡ช๐Ÿ‡ธ, specializing in technological innovation in construction ๐Ÿ—๏ธ. His research focuses on the use of Shape Memory Alloys (SMAs) in 3D concrete printing ๐Ÿงฑ๐Ÿค–. With a solid academic foundation and teaching experience at Payame-Noor University ๐Ÿ“š, Bahram has contributed to several international conferences and journals ๐ŸŒโœ๏ธ. Passionate about digital fabrication and structural innovation, he blends engineering knowledge with practical advancements. He actively collaborates with experts across disciplines and is committed to enhancing sustainable and intelligent building practices ๐ŸŒฑ๐Ÿ›๏ธ.

Professional Profile

Google Scholar
Orcid

Education & Experienceย 

๐ŸŽ“ Education:
  • ๐Ÿ“ PhD in Civil Engineering โ€“ Technological Innovation in Building (2021โ€“Present), Polytechnic University of Madrid

  • ๐Ÿ“ M.Sc. in Civil Engineering โ€“ Road and Transportation (2011โ€“2013), Imam Khomeini International University

  • ๐Ÿ“ B.Sc. in Civil Engineering (2007โ€“2011), University of Guilan

๐Ÿ‘จโ€๐Ÿซ Teaching Experience (2014โ€“2017):
  • ๐Ÿ‘ท Structures Analysis 2

  • ๐Ÿ—๏ธ Construction Design 1

  • ๐Ÿšœ Construction Machinery

  • ๐Ÿง  Value Engineering

  • ๐Ÿงช Materials and Construction Methods + Laboratory

  • ๐Ÿ“‹ Project Management Standards

๐Ÿ”ฌ Research Contributions:
  • ๐Ÿ›๏ธ Reinforcement of 3D concrete printing with SMAs

  • ๐Ÿ‘ฃ Pedestrian behavior modeling with cellular automata

  • โœˆ๏ธ Airline demand diversion modeling

  • ๐Ÿซ Safety prioritization in educational centers

Summary Suitability

Dr. Bahram Ahadi is a distinguished nominee for the Best Researcher Award, recognized for his pioneering contributions to the field of civil engineering, particularly in the advancement of 3D concrete printing technology reinforced with Shape Memory Alloys (SMAs). His innovative research bridges the gap between digital fabrication and structural resilience, making him an exemplary candidate for this prestigious honor.

Professional Developmentย 

Dr. Bahram Ahadi continually enhances his professional skills through active participation in international conferences, including ICERI, INTED, and BIMIC ๐ŸŒ๐ŸŽค. His engagement with emerging technologies such as 3D concrete printing and Shape Memory Alloys keeps him at the forefront of construction innovation ๐Ÿงฑ๐Ÿ”ง. He also collaborates with multidisciplinary teams to address complex engineering challenges ๐Ÿ‘จโ€๐Ÿ”ฌ๐Ÿค. As an academic author and presenter, Bahram shares his findings widely to contribute to the global engineering community ๐Ÿ“˜๐ŸŒ. He is passionate about sustainable, efficient construction solutions and integrates new technologies with practical design approaches ๐Ÿ’ก๐Ÿ—๏ธ.

Research Focusย 

Bahram Ahadi’s research falls under the “Technological Innovations in Civil and Structural Engineering” category ๐Ÿ—๏ธ๐Ÿ’ก. He explores cutting-edge construction techniques, particularly the integration of Shape Memory Alloys (SMAs) into 3D concrete printing (3DCP) ๐Ÿงฑ๐Ÿ”. His work emphasizes structural enhancement, digital fabrication, and smart material applications in building design ๐Ÿค–๐Ÿ“. By developing in-process reinforcement methods using Nitinol fibers, he aims to revolutionize construction practices with greater sustainability and resilience ๐ŸŒฑ๐Ÿข. Bahram’s focus on finite element modeling and experimental validation ensures that his innovations have practical, real-world applications for the future of construction infrastructure ๐ŸŒ๐Ÿ”.

Awards & Honorsย 

  • ๐Ÿ† Presenter at ICERI 2022 โ€“ Seville, Spain

  • ๐Ÿ† Presenter at BIMIC 2022 & 2023 โ€“ Madrid, Spain

  • ๐Ÿ† Presenter at INTED 2023 โ€“ Valencia, Spain

  • ๐Ÿ† Presenter at CITE 2023 โ€“ Madrid, Spain

  • ๐Ÿ† Publication in Buildings MDPI 2025, Volume 15, Issue 10, Article 1721

  • ๐Ÿ… Recognized for early contributions to 3D Concrete Printing with SMAs

Publication Top Notes

  • Ahadi, B., & Lopez, M. V. (2022).
    Use of Nitinol-Shape Memory Alloy in the Reinforcement of 3D Concrete Printing Industry.
    ICERI2022 Proceedings, pp. 7470โ€“7479.
    ๐Ÿ“ Seville, Spain | ๐Ÿ›๏ธ International Conference of Education, Research and Innovation (ICERI)

  • Lopez, M. M. V., & Ahadi, B. (2023).
    Development of Demand Diversion Model from Conventional Construction Methods to 3D Concrete Printing (3DCP).
    INTED2023 Proceedings, pp. 4175โ€“4185.
    ๐Ÿ“ Valencia, Spain | ๐Ÿ›๏ธ International Technology, Education and Development Conference (INTED)

  • Ahadi, B., & Lopez, M. V. (2023).
    Development of Demand Diversion Model from Conventional Construction Methods to 3D Concrete Printing (3DCP).
    ๐Ÿ“ Valencia, Spain | ๐Ÿ›๏ธ International Technology, Education and Development Conference (INTED)

  • Ahadi, B., Lopez, M. V., & Daryakenari, F. G. (2023).
    Use of Nitinol Fibers in the Reinforcement of 3D Concrete Printing / Uso de Fibras de Nitinol en el Refuerzo de Impresiรณn 3D de Hormigรณn.
    ๐Ÿ“ Madrid, Spain | ๐Ÿ›๏ธ BIMIC 2023 โ€“ Building Information Modeling International Conference

  • Ahadi, B., & Lopez, M. V. (2022).
    A New Method for Reinforce and Design of 3D Concrete Printing (3DCP): Considering Structural Frames / Un Nuevo Mรฉtodo para Reforzar y Diseรฑar la Impresiรณn 3D de Hormigรณn (3DCP).
    ๐Ÿ“ Madrid, Spain | ๐Ÿ›๏ธ BIMIC 2022 โ€“ Building Information Modeling International Conference

Conclusion

Dr. Bahram Ahadi has made outstanding strides in academic research and real-world engineering challenges. His work not only contributes to scientific literature but also redefines practical methods in modern construction. These qualities make him exceptionally suitable for the Best Researcher Awardโ€”a recognition that would honor his dedication, impact, and future promise in engineering research.

Prof. Dr. Vedat Oruรง | Engineering | Best Researcher Award

Prof. Dr. Vedat Oruรง | Engineering | Best Researcher Award

Prof. Dr. Vedat Oruรง , Dcile University , Turkey.

Prof. Dr. Vedat Oruรง ๐Ÿ‘จโ€๐Ÿซ is a distinguished academic at the Department of Mechanical Engineering, Faculty of Engineering, Dicle University, Diyarbakฤฑr, Turkiye ๐Ÿ‡น๐Ÿ‡ท. Since 1998, he has dedicated his career to advancing the fields of fluid mechanics, flow control, and refrigeration ๐ŸŒฌ๏ธโ„๏ธ. With 41 publications in top-tier journals ๐Ÿ“š and a Web of Science H-index of 15 ๐Ÿ“ˆ, his contributions are widely recognized. He actively shares his research across platforms like Scopus, Web of Science, and Google Scholar ๐ŸŒ. Prof. Oruรง is known for his dedication, impactful research, and long-standing commitment to engineering education and innovation โš™๏ธ๐ŸŽ“.

Publication Profile

Scopus
Orcid
Google Scholar

Education and Experienceย 

  • ๐ŸŽ“ Academic Background: Mechanical Engineering, Dicle University

  • ๐Ÿ‘จโ€๐Ÿซ Teaching Experience: Faculty member since 1998 at Dicle University

  • ๐Ÿ›๏ธ Institution: Department of Mechanical Engineering, Faculty of Engineering, Dicle University

  • ๐Ÿ“ Location: Diyarbakฤฑr, Turkiye

  • ๐Ÿงช Research Focus: Fluid Mechanics, Flow Control, Refrigeration

Suitability Summary

Prof. Dr. Vedat Oruรง, a distinguished academic at Dicle University, Tรผrkiye, is an ideal candidate for the Best Researcher Award. With over 25 years of experience in mechanical engineering, his work has significantly advanced the fields of fluid mechanics, flow control, and refrigeration. Prof. Oruรง has authored 41 peer-reviewed journal articles indexed in SCI and Scopus, demonstrating both depth and consistency in research. His scholarly influence is reflected in a Web of Science H-index of 15, and his publications are widely cited across reputable platforms. His academic integrity and commitment to innovative research make him a strong contender for this prestigious honor.

Professional Developmentย 

Prof. Dr. Vedat Oruรง has steadily built his professional expertise through decades of teaching and research ๐Ÿง‘โ€๐Ÿ”ฌ๐Ÿ“˜. With over 41 publications in reputable journals indexed in SCI and Scopus ๐Ÿ“„๐Ÿ”, he demonstrates a strong foundation in experimental and theoretical engineering. His academic journey is supported by high-impact research reflected in a WOS H-index of 15 ๐Ÿ“Š. He continues to contribute to the advancement of fluid mechanics and flow technologies through innovative work and continuous learning ๐Ÿ”„. By staying actively involved in scholarly platforms like Scopus, Web of Science, and Google Scholar ๐ŸŒ, he ensures visibility and collaboration opportunities across borders ๐ŸŒ.

Research Focusย 

Prof. Dr. Vedat Oruรง specializes in the dynamic fields of fluid mechanics, flow control, and refrigeration ๐ŸŒŠ๐ŸŒ€โ„๏ธ. His work investigates the behavior of fluids under various physical conditions, aiming to optimize control methods for engineering applications ๐Ÿš€. These areas are critical in industries ranging from HVAC systems to aerospace and energy efficiency ๐ŸŒก๏ธโœˆ๏ธ๐Ÿ”‹. His 41 peer-reviewed journal publications illustrate a strong commitment to expanding theoretical and applied research. By focusing on efficient energy transfer and innovative flow techniques, Prof. Oruรง contributes significantly to sustainable engineering and practical technological advancement โš™๏ธ๐ŸŒฑ๐Ÿ“ˆ.

Awards and Honorsย 

  • ๐Ÿ† Nominee: Best Researcher Award โ€“ Superior Engineering Research Awards

  • ๐Ÿงช Scientific Recognition: 41 peer-reviewed publications (SCI, Scopus)

  • ๐Ÿ“ˆ Impact Metric: Web of Science H-index of 15

  • ๐ŸŒ Global Visibility: Active profiles on Scopus, Web of Science, ResearchGate, and Google Scholar

Publication Top Notesย 

  • ๐Ÿ”ฌ The Thermodynamic and Environmental Analysis of a Variable Speed R404A Refrigeration System Using R455A

  • ๐Ÿ“‰ Isฤฑ Pompasฤฑ KullanฤฑldฤฑฤŸฤฑnda Optimum Yalฤฑtฤฑm KalฤฑnlฤฑฤŸฤฑnฤฑn Belirlenmesi ve Ekonomik Analizi

    • Journal: DรœMF Mรผhendislik Dergisi

    • Date: October 5, 2024

    • DOI: 10.24012/dumf.1547522

    • Contributors: UฤŸur Yaman, Atilla Gencer DevecioฤŸlu, Vedat Oruรง

  • ๐Ÿ  The Evaluation and Improvement for the Energy Performance of Buildings: A Case Study

    • Journal: Next Energy

    • Date: July 2024

    • DOI: 10.1016/j.nxener.2024.100126

    • ISSN: 2949-821X

    • Contributors: Atilla G. DevecioฤŸlu, Burhan Bilici, Vedat Oruรง

  • โ„๏ธ Retrofit of an Internal Heat Exchanger in a R404A Refrigeration System Using R452A

    • Journal: Next Energy

    • Date: April 2024

    • DOI: 10.1016/j.nxener.2024.100107

    • Contributors: Vedat Oruรง, Atilla G. DevecioฤŸlu, DerviลŸ B. ฤฐlhan

  • ๐ŸŒฌ๏ธ An Investigation on the Utilization of R470A for Air-Conditioning Systems Towards 2025

    • Journal: Journal of Advanced Thermal Science Research

    • Date: August 16, 2023

    • DOI: 10.15377/2409-5826.2023.10.1

    • ISSN: 2409-5826

    • Contributors: Atilla G. DevecioฤŸlu, Vedat Oruรง

  • ๐ŸงŠ SoฤŸutma Sistemlerinde R454C Kullanฤฑlmasฤฑnฤฑn Deneysel ฤฐncelenmesi

    • Journal: Politeknik Dergisi

    • Date: March 27, 2023

    • DOI: 10.2339/politeknik.898828

    • ISSN: 2147-9429

    • Contributors: Atilla Gencer DevecioฤŸlu, Vedat Oruรง

  • ๐Ÿ‡ช๐Ÿ‡บ On the Satisfaction of EU F-Gas Regulation Using R455A as an Alternative to R404A

    • Journal: Materials Today: Proceedings

    • Date: 2022

    • DOI: 10.1016/j.matpr.2021.11.506

    • ISSN: 2214-7853

    • Contributors: Atilla G. DevecioฤŸlu, Vedat Oruรง

  • โ™ป๏ธ Drop-in Assessment of Plug-in R404A Refrigeration Equipment Using Low-GWP Mixtures

    • Journal: International Journal of Low-Carbon Technologies

    • Date: July 25, 2022

    • DOI: 10.1093/ijlct/ctac078

    • ISSN: 1748-1325

    • Contributors: Atilla G. DevecioฤŸlu, Vedat Oruรง

Conclusion

Prof. Dr. Vedat Oruรงโ€™s outstanding publication record, impactful research, and long-standing academic contributions solidify his candidacy for the Best Researcher Award. His work not only advances core areas of mechanical engineering but also provides real-world applications in energy systems and fluid technologies. With a legacy of academic excellence and continued dedication to research, he exemplifies the high standards this award seeks to recognize.

Donghyuk Kim | Materials Chemistry | Best Researcher Award

Dr. Donghyuk Kim | Materials Chemistry | Best Researcher Award

Korea Institute of Industrial Technology, South Korea

๐Ÿ‘จโ€๐ŸŽ“Profiles

๐Ÿ“ˆ Early Academic Pursuits

He began his academic journey with a strong foundation in Materials Engineering. He completed his Master's degree at Sungkyunkwan University (2002-2004) under the supervision of Professor Young-Jik Kim, where he specialized in New Materials Engineering. His passion for metallurgical advancements led him to pursue a Ph.D. at Kyungpook National University (2013-2018). Under the guidance of Professor Byeong-Jun Ye, his doctoral research culminated in the thesis titled "Study on the Austenite Formation and Oxidation Resistance of AGI (Austempered Gray Cast Iron) According to Aluminum Content". This foundational research paved the way for his expertise in cast iron materials and oxidation resistance, laying a solid groundwork for his professional journey.

๐Ÿ’ผ Professional Endeavors

He currently holds the position of Senior Researcher in the Mobility Components Group at the Korea Institute of Industrial Technology (KITECH). With a strong background in materials science, he actively contributes to innovative research and development projects focusing on mobility technologies and industrial applications. His role involves leading projects, fostering collaboration, and advancing key components that enhance industrial mobility solutions. Located in Daegu, Republic of Korea, He plays a pivotal role in strengthening Korea's technological edge in manufacturing and materials research.

๐Ÿ”ฌ Research Focus and Contributions

His research focuses on the microstructure evolution, austenite formation, and oxidation resistance of advanced cast iron materials. His doctoral work on Austempered Gray Cast Iron (AGI) highlighted the critical role of aluminum content in improving material properties, including high-temperature oxidation resistance and enhanced mechanical performance. His contributions extend to: Investigating advanced metallurgical processes, Improving the durability and strength of mobility components, Developing materials with enhanced resistance to environmental factors,ย His work has broad applications in automotive, aerospace, and industrial manufacturing, addressing challenges in material sustainability and performance optimization.

๐Ÿ” Impact and Influence

Through his pioneering research, He has significantly contributed to advancements in metallurgical engineering. His insights into cast iron's microstructure behavior have influenced the development of next-generation materials for industrial applications. As a Senior Researcher at KITECH, he actively mentors junior researchers and collaborates with industry leaders, fostering an environment of innovation. His research not only impacts academic circles but also drives industrial practices, particularly in the mobility and manufacturing sectors.

๐Ÿ“… Academic Citations

His scholarly works are well-recognized in the field of materials engineering. His research findings have been cited in multiple peer-reviewed journals, demonstrating the academic value and practical relevance of his studies. Notably, his contributions to Austempered Gray Cast Iron research remain a reference point for researchers focusing on oxidation resistance and microstructure formation.

๐Ÿ› ๏ธ Technical Skills

He is highly proficient in various technical domains, including: Metallurgical Analysis: Austenite and ferrite formation studies, Materials Characterization: XRD, SEM, TEM, and mechanical testing techniques, Oxidation Resistance Testing: Evaluating material stability at high temperatures, Industrial Application Development: R&D for mobility components and advanced alloys,ย His technical expertise bridges the gap between theoretical research and practical applications, enabling the development of robust materials.

๐Ÿ’ผ Teaching and Mentorship

Throughout his academic and professional career, He has been dedicated to mentoring students and junior researchers. His ability to explain complex metallurgical phenomena in practical terms has earned him respect as an effective mentor. By guiding research projects and fostering innovation, he has inspired the next generation of materials scientists to explore sustainable and high-performance materials.

โœจ Legacy and Future Contributions

His legacy lies in his impactful research on cast iron materials and their applications in industrial mobility. Moving forward, he remains committed to: Developing eco-friendly and sustainable materials for industrial applications. Enhancing the performance of mobility components through advanced metallurgical processes. Contributing to global collaborations that drive innovation in materials science.ย As a Senior Researcher, he continues to bridge academic research with industrial advancements, ensuring that his work shapes the future of material engineering and mobility technologies.

๐Ÿ“ Conclusion

His career reflects a seamless blend of academic excellence and professional expertise. From his early academic pursuits to his current role as a Senior Researcher at KITECH, he has consistently contributed to the field of metallurgical engineering. His research, technical skills, and mentorship have left an enduring mark on both academia and industry, positioning him as a leader in advanced materials development and innovation.

๐Ÿ“–Notable Publications