Prof. Shuren Wang | Structural Engineering | Editorial Board Member

Prof. Shuren Wang | Structural Engineering | Editorial Board Member

Prof. Shuren Wang | Henan Polytechnic University | China

Prof. Shuren Wang is a highly accomplished scholar in civil and geotechnical engineering, numerical simulation, and complex geotechnical system analysis. As a Distinguished Professor of Henan Province and an Adjunct Professor at the University of New South Wales, he has built a strong academic presence supported by major national and provincial research grants, including multiple projects under the National Natural Science Foundation of China and key scientific programs in Henan Province. His research achievements are reflected in substantial global impact metrics, with 2,935 citations in Scopus, citations from 2,302 documents, 228 indexed documents, and an h-index of 29, demonstrating his sustained influence across engineering disciplines. In addition, his ORCID profile lists 172 works, with 50 displayed, further showcasing the breadth of his scholarly output. Shuren Wang has published over 190 SCI/EI journal papers, 16 books, and numerous technical contributions, supported by extensive patents and software rights. His work has advanced understanding in areas such as tunnel excavation behavior, lightweight and composite concrete performance, anchorage mechanisms, and dynamic damage modeling, establishing him as a leading figure in civil and geotechnical engineering research.

Profiles: Scopus | Orcid

Featured Publications

Zhang, J., Fang, Z., Zhang, X., Wang, S., Cao, Y., & Lutynski, M. (2025). Coupling characteristics of crack propagation-energy dissipation-damage evolution of coal-like material under impact loading. Results in Engineering, 2025(December), Article 107333.

Gong, J., Zhang, J., Wang, S., Ma, A., & Li, Z. (2025). Investigation on performance improvement and dynamic damage model of phosphoric acid-modified MOC composite with industrial slag. Results in Engineering, 2025(December), Article 107283.

Wang, S., Cheng, C., Gong, J., & Song, Z. (2025). Dynamic mechanical properties of magnesium oxychloride-based titanium gypsum concrete after high-temperature exposure. Construction and Building Materials, 472, 140841.

Fan, L., Xu, F., Wang, S., Yu, Y., Li, P., Zhang, J., & Yu, L. (2025). Role of halloysite nanotubes in modulating the mechanical and microstructural characteristics of geopolymer concrete under thermal curing. Construction and Building Materials, 472, 140897.

Gong, J., He, M., Zhang, J., Liang, W., & Wang, S. (2025). Dynamic impact mechanical properties of red sandstone based on digital image correlation method. International Journal of Mining, Reclamation and Environment.

Gong, J., Zhang, J., Wang, S., He, M., Ma, A., & Li, C. (2024). Impact dynamic properties of magnesium oxychloride-doped paper sludge composites. DYNA, 99(3), D11259.

Dr. Bin Zhang | Structural Engineering | Best Researcher Award

Dr. Bin Zhang | Structural Engineering | Best Researcher Award

Dr. Bin Zhang | Chongqing University of Science and Technology | China

Dr. Bin Zhang holds a Doctorate in Engineering and has completed postdoctoral research. He is a lecturer and master’s supervisor in the Department of Road and Bridge Engineering, School of Civil and Hydraulic Engineering, and a youth committee member of the World Transport Convention. His research focuses on the dynamic characteristics of underground and tunnel structures, the development of new materials and technologies for structural reinforcement, and intelligent monitoring of structural health. His research output includes 26 documents, 171 citations, 146 citing documents, and an h-index of 8. He teaches both undergraduate and postgraduate courses, including Tunnel Engineering, Engineering Surveying, Tunnel Mechanics, and Frontier Technologies in Civil Engineering, integrating theoretical knowledge with practical applications to advance innovation in civil and tunnel engineering. Additionally, he has developed advanced experimental methods for studying tunnel lining mechanics, contributing to safer and more efficient tunnel design practices.

Profile: Scopus | Orcid

Featured Publications

  • Study on the Stability of Buildings During Excavation in Urban Core Areas, Applied Sciences, 2025. Contributors: Kang Liu, Huafeng Liu, Yuntai Gao, Zijian Wang, Yunchuan Wang, Qi Liu, Chaolin Jia, Zihang Huang, Bin Zhang.

  • Experimental Study on Mechanical Differences Between Prefabricated and Cast-In Situ Tunnel Linings Based on a Load-Structure Model, Buildings, 2025. Contributors: Li-Ming Wu, Hong-Kun Li, Feng Gao, Zi-Jian Wang, Bin Zhang, Wen-Jie Luo, Jun-Jie Li.

  • Mechanical Properties of Steel Fiber-Reinforced Concrete Tunnel Secondary Lining Structure and Optimization of Support Parameters, Buildings, 2025. Contributors: Zijian Wang, Yunchuan Wang, Xiaorong Wang, Baosheng Rong, Bin Zhang, Liming Wu, Chaolin Jia, Zihang Huang.

  • Crystallization Blockage in Highway Tunnel Drainage System Based on Molecular Dynamics, AIP Advances, 2025. Contributors: Shiyang Liu, Xuefu Zhang, Bin Zhang.

  • Experimental Study on Grouting Diffusion Law of Tunnel Secondary Lining Cracks Based on Different Slurry Viscosities, Applied Sciences, 2025. Contributors: Bin Zhang, Peng Liu, Yi Wu, Liming Wu, Chen Li, Shiyang Liu, Yuanfu Zhou.

  • Experimental Study on Grouting Diffusion Law of the Different Crack Widths in Tunnel Lining, KSCE Journal of Civil Engineering, 2023. Contributors: Bin Zhang, Yuanfu Zhou, Xuefu Zhang, Zijian Wang, Wei Yang, Yixuan Ban.

  • Anti Crystallization Blocking of Flocking Drainage Pipe Based on Natural Phenomenon, Materials Science, 2022. Contributors: Xuefu Zhang, Shiyang Liu, Feng Gao, Yuanfu Zhou, Bin Zhang.

Prof. Dr. Qinghe Shi | Structural Engineering | Best Researcher Award

Prof. Dr. Qinghe Shi | Structural Engineering | Best Researcher Award

Prof. Dr. Qinghe Shi | Jiangsu University of Technology | China

Dr. Shi Qinghe is a Lecturer and Master’s Supervisor at the School of Materials Engineering, Jiangsu University of Technology. He earned his Ph.D. in Engineering from the School of Aeronautic Science and Engineering, Beihang University. His research focuses on structural health monitoring, damage identification, load identification, and optimization design of composite structures. Dr. Shi has led and participated in numerous research projects funded by national and provincial foundations, as well as industry collaborations. With extensive publications in high-impact journals, he has contributed significantly to advancements in composite structure analysis and monitoring technologies, fostering innovation in materials engineering and structural safety.

Professional Profile

Scopus

Education and Experience

Dr. Shi Qinghe obtained his Ph.D. in Engineering from Beihang University’s School of Aeronautic Science and Engineering, where he specialized in advanced structural analysis and engineering applications. Following his graduation, he joined Jiangsu University of Technology as a Lecturer in the School of Materials Engineering. Since then, he has been engaged in teaching, research, and supervision of master’s students. His academic journey reflects a deep commitment to materials science, particularly in areas that combine theoretical modeling with real-world engineering challenges. Over the years, he has also established strong collaborations with industry, enabling the translation of research findings into practical solutions.

Summary Suitability

Dr. Shi Qinghe is an outstanding candidate for the Best Researcher Award, recognized for his groundbreaking contributions in structural health monitoring, damage identification, load identification, and optimization design of composite structures. As a Lecturer and Master’s Supervisor at Jiangsu University of Technology, he has led numerous high-impact research projects funded by national and provincial foundations, as well as industry collaborations. His expertise spans theoretical modeling, computational methods, and practical engineering applications, ensuring his work directly benefits aerospace, transportation, and civil engineering sectors.

Professional Development 

Throughout his career, Dr. Shi Qinghe has demonstrated continuous professional growth through active engagement in high-level research projects and academic contributions. As a principal investigator, he has managed multiple projects funded by national foundations and industry partners, enhancing his expertise in structural health monitoring and composite material optimization. He has built a strong publication record in leading international journals, reflecting his commitment to scholarly excellence. His mentorship of graduate students fosters a collaborative and innovative research environment. Dr. Shi also actively participates in provincial and national research networks, enabling cross-disciplinary advancements and reinforcing his role as a thought leader in engineering research.

Research Focus 

Dr. Shi Qinghe’s research is centered on structural health monitoring, damage identification, load identification, and optimization design for composite structures. His work emphasizes the development of advanced computational methods and probabilistic models to address uncertainties in engineering applications. By integrating theoretical mechanics, applied mathematics, and material science, he aims to create accurate and efficient techniques for evaluating and improving the performance of complex structural systems. His studies contribute to ensuring structural safety, reducing maintenance costs, and extending service life in aerospace, transportation, and civil engineering fields. Through innovative methodologies, his research bridges the gap between fundamental theory and engineering practice.

Awards and Honors

Dr. Shi Qinghe has been recognized as a Jiangsu Youth Science and Technology Talent, reflecting his significant contributions to engineering research and innovation. He has also been selected for the Zhongwu Youth Innovation Talent Program, which acknowledges promising researchers with strong potential for leadership in scientific development. These honors highlight his dedication to advancing materials engineering and structural health monitoring. His achievements demonstrate not only academic excellence but also the ability to integrate research with industrial applications, driving forward technological solutions that address practical challenges in the field.

Publication Top Details

Title: Novel study on strain modes-based interval damage identification methodology utilizing orthogonal polynomials and collocation theories
Year: 2025
Citation: 3

Title: Assessment of tensile behaviour and damage evolution of open and filled hole FMLs based on AE monitoring and numerical prediction
Year: 2025
Citation: 5

Title: Investigation on damage behaviors of carbon fiber-reinforced nylon 6 thermoplastic composite laminates using acoustic emission and digital image correlation techniques
Year: 2025
Citation: 2

Conclusion

Dr. Shi Qinghe’s exceptional research output, innovative methodologies, and ability to integrate academic excellence with practical engineering solutions make him highly deserving of the Best Researcher Award. His contributions have strengthened the field of composite structure analysis and monitoring, delivering tools and techniques that improve safety, durability, and performance in critical engineering applications. With a proven record of impactful publications, funded projects, and talent cultivation, Dr. Shi embodies the qualities of a world-class researcher committed to advancing science and engineering.