Ms. Haitong Yang | Renewable Energy | Women Researcher Award

Ms. Haitong Yang | Renewable Energy | Women Researcher Award

Ms. Haitong Yang | China university of geosciences | China

Ms. Haitong Yang is a joint Ph.D. student at the China University of Geosciences (Beijing) specializing in Oil and Gas Engineering, with research focusing on advanced interpretation methods for production profiling based on microbial DNA sequencing. His academic background includes a Master’s degree in Oil and Gas Engineering from the China University of Petroleum (Beijing), where his work centered on production dynamic monitoring using microbial DNA sequencing, and a Bachelor’s degree in Oil and Gas Storage and Transportation Engineering from Northeast Petroleum University. Haitong has been recognized with multiple national and international awards, including the National Scholarship for Chinese Graduate Students, first prizes in the China Doctoral Academic Forum and the Asia Pacific Cup in Mathematical Modeling, as well as honors in innovation and entrepreneurship competitions. His technical expertise encompasses DNA extraction experiments, Mothur, CMG, Petrel, and MATLAB, applied to major projects in Shengli and Changqing Oilfields, where his work integrates microbial genomics with petroleum engineering to optimize reservoir evaluation, water flow path tracking, and fluid biomarker analysis. His contributions have resulted in 9 published documents, 51 citations by 47 documents, and an h-index of 3, reflecting his growing impact in the field of intelligent oil and gas engineering and reservoir characterization.

Profile: Scopus

Featured Publication

Yang, H., Kang, Z., Wang, S., & Jiang, H. (2025). DNA-sequencing method maps subsurface fluid flow paths for enhanced monitoring. Communications Earth and Environment.

 

Dr. Nisha Dagade | Renewable Energy | Best Researcher Award

Dr. Nisha Dagade | Renewable Energy | Best Researcher Award

Dr. Nisha Dagade | Sinhgad Institutes | India

Dr. Nisha R. DagadeΒ  is an accomplished Assistant Professor at Sinhgad Institutes, Pune, India, specializing in electrical power systems with a particular focus on Distributed GenerationΒ  and Reliability Analysis. Her research emphasizes the optimal integration of renewable DG sources into modern distribution networks, addressing both technical and economic challenges through heuristic and metaheuristic optimization approaches such as Ant Colony Optimization (ACO). Dr. Dagade’s scholarly contributions explore multi-objective frameworks that aim to reduce power losses, improve voltage profiles, and enhance the overall reliability and cost-effectiveness of distribution systems. Her notable work, β€œAnt colony optimization technique for integrating renewable DG in distribution system with techno-economic objectives,” published in Evolving Systems (2022), has gained significant academic recognition. With a strong research portfolio comprising 10 completed and ongoing projects, 7 Scopus-indexed journal publications, and one published book, and maintains an active research profile with 61 citations, an h-index of 5, and an i10-index of 2 , she continues to advance innovation in the domain of sustainable power systems. She has also collaborated with IIT Bombay on research initiatives that bridge academic insights with real-world applications. Her professional memberships in IAENG and I2OR reflect her active engagement in the global engineering research community. Dr. Dagade’s work embodies the integration of renewable energy technologies for efficient, reliable, and environmentally responsible power system development.

Profile: Google Scholar

Featured Publications

  • Godha, N. R., Bapat, V. N., & Korachagaon, I. (2022). Ant colony optimization technique for integrating renewable DG in distribution system with techno-economic objectives. Evolving Systems, 13(3), 485–498.

  • Godha, N. R., Deshmukh, S. R., & Dagade, R. V. (2011). Application of Monte Carlo simulation for reliability cost/worth analysis of distribution system. In 2011 International Conference on Power and Energy Systems (pp. 1–6).

  • Godha, N. R., Deshmukh, S. R., & Dagade, R. V. (2012). Time sequential Monte Carlo simulation for evaluation of reliability indices of power distribution system. In Proceedings of the 2012 IEEE Symposium on Computers and Informatics (ISCI 2012).

  • Godha, N. R., Bapat, V. N., & Korachagaon, I. (2019). Placement of distributed generation in distribution networks: A survey on different heuristic methods. In Techno-Societal 2018: Proceedings of the 2nd International Conference on Techno-Societal.

  • Dagade, N. R. G., Bapat, V. N., & Korachagaon, I. (2020). Improved ACO for planning and performance analysis of multiple distributed generations in distribution system for various load models. In 2020 Second International Sustainability and Resilience Conference.

 

 

Prof. Dr. Jose Manuel Andujar Marquez | Renewable Energy | Hydrogen Energy Award

Prof. Dr. Jose Manuel Andujar Marquez | Renewable Energy | Hydrogen Energy Award

Prof. Dr. Jose Manuel Andujar Marquez | University of Huelva | Spain

Prof. Dr. Jose Manuel Andujar Marquez is a Full Professor at the University of Huelva in Spain with expertise in control engineering, renewable energies, hydrogen technologies, energy rehabilitation, engineering education, and precision farming. He holds a PhD in Engineering from the University of Huelva, a degree in Physical Sciences from UNED, and an Industrial Technical Engineering degree from the University of Seville. Over his career, he has authored more than five hundred fifty publications including journal articles, books, book chapters, conference papers, and patents, with over one hundred seventy articles indexed in ISI JCR journals and more than ninety in Q1 journals. Notably, fifty-four of his articles appear in the top ten journals in their category, several ranking first. His work has significant international impact, reflected in an h index of forty or more on Scopus, forty-six or more on ResearchGate, and fifty-two or more on Google Scholar, with over ten thousand citations in major databases and more than two hundred fifty thousand reads on ResearchGate. His research contributions span intelligent control systems, renewable energy integration, sustainable engineering technologies, and precision farming, demonstrating a strong commitment to innovation and advancing engineering solutions for global challenges. His publications have influenced both academic research and practical applications in energy efficiency, smart systems, and sustainable technology development.

Profile: Scopus | Google Scholar | Orcid

Featured Publications

AndΓΊjar, J. M., & Segura, F. (2009). Fuel cells: History and updating. A walk along two centuries. Renewable and Sustainable Energy Reviews, 13(9), 2309-2322.

AndΓΊjar, J. M., MejΓ­as, A., & MΓ‘rquez, M. A. (2010). Augmented reality for the improvement of remote laboratories: An augmented remote laboratory. IEEE Transactions on Education, 54(3), 492-500.

Enrique, J. M., DurΓ‘n, E., Sidrach-de-Cardona, M., & AndΓΊjar, J. M. (2007). Theoretical assessment of the maximum power point tracking efficiency of photovoltaic facilities with different converter topologies. Solar Energy, 81(1), 31-38.

Vivas, F. J., De las Heras, A., Segura, F., & AndΓΊjar, J. M. (2018). A review of energy management strategies for renewable hybrid energy systems with hydrogen backup. Renewable and Sustainable Energy Reviews, 82, 126-155.

Enrique, J. M., AndΓΊjar, J. M., & Bohorquez, M. A. (2010). A reliable, fast and low cost maximum power point tracker for photovoltaic applications. Solar Energy, 84(1), 79-89.

SΓ‘nchez Cordero, A., GΓ³mez Melgar, S., & AndΓΊjar MΓ‘rquez, J. M. (2019). Green building rating systems and the new framework Level(s): A critical review of sustainability certification within Europe. Energies, 13(66), 1-26.

DurΓ‘n, E., Piliougine, M., Sidrach-de-Cardona, M., GalΓ‘n, J., & AndΓΊjar, J. M. (2008). Different methods to obtain the I–V curve of PV modules: A review. In 2008 33rd IEEE Photovoltaic Specialists Conference (pp. 1-6).

Dr. Aamir Ali | Smart Grid Systems | Best Researcher Award

Dr. Aamir Ali | Smart Grid Systems | Best Researcher Award

Dr. Aamir Ali | Quaid-e-Awam University of Engineering Science and Technology | Pakistan

Dr. Aamir Ali is currently serving as an Assistant Professor (BPS-19) in the Department of Electrical Engineering at Quaid-e-Awam University of Engineering, Science and Technology (QUEST), Nawabshah, Sindh, Pakistan. He is a highly dedicated academic and researcher specializing in power system planning and optimization, distributed generation, and microgrid operations in both islanded and grid-connected modes. Dr. Ali earned his Ph.D. in Electrical Engineering from QUEST in 2020, where his doctoral research focused on single and multi-objective mathematical programming, direct search evolutionary algorithms, and optimization techniques for economic dispatch, optimal power flow, and unit commitment with renewable energy integration such as wind and solar PV systems. Prior to his doctorate, he completed his Master of Engineering in Power System Optimization from the same institution in 2015 and his Bachelor of Engineering in Electrical Power with an outstanding 85% score in 2012. His academic journey began with strong foundational performance at the intermediate and matriculation levels, both from the Board of Intermediate and Secondary Education, Hyderabad, Sindh, where he secured first division and A-1 grade distinctions. With 445 citations by 342 documents, 27 published works, and an h-index of 11, Dr. Aamir Ali has established himself as an active researcher in power systems optimization. He aspires to continue contributing to academia and research while leading a top-tier institution toward excellence in education and innovation.

Profile: Scopus | Orcid

Featured Publications

Akbar Talani, R., Kaloi, G. S., Ali, A., Abbas, G., Emara, A., & Touti, E. (2025, July 29). Fault analysis and performance improvement of grid-connected doubly fed induction generator through an enhanced crowbar protection scheme. PLOS One.

Ali, A., Akbar Talani, R., Kaloi, G. S., Bijarani, M. A., Abbas, G., Hatatah, M., Mercorelli, P., & Touti, E. (2025, January 29). Dynamic performance analysis and fault ride-through enhancement by a modified fault current protection scheme of a grid-connected doubly fed induction generator. Machines, 13(2).

Ali, A., Ali, A., Liu, Z., Abbas, G., Touti, E., & Nureldeen, W. (2024). Dynamic multi-objective optimization of grid-connected distributed resources along with battery energy storage management via improved bidirectional coevolutionary algorithm. IEEE Access.

Ali, A., Shah, A., Keerio, M. U., Mugheri, N. H., Abbas, G., Touti, E., Hatatah, M., Yousef, A., & Bouzguenda, M. (2024). Multi-objective security constrained unit commitment via hybrid evolutionary algorithms. IEEE Access.

Abbas, G., Wu, Z., & Ali, A. (2024, December). A two-stage reactive power optimization method for distribution networks based on a hybrid model and data-driven approach. IET Renewable Power Generation.

Ali, A., Aslam, S., Mirsaeidi, S., Mugheri, N. H., Memon, R. H., Abbas, G., & Alnuman, H. (2024, December). Multi-objective multiperiod stable environmental economic power dispatch considering probabilistic wind and solar PV generation. IET Renewable Power Generation.

Dr. Qinglu Fan | Renewable Energy | Best Researcher Award

Dr. Qinglu Fan | Renewable Energy | Best Researcher Award

Dr. Qinglu Fan | YiBin Vocational And Technical College | China

Dr. Qinglu Fan is a lecturer at YiBin Vocational and Technical College, specializing in materials science and engineering with a research focus on nickel-based layered cathode materials for lithium-ion batteries. She earned her doctoral degree at Guangdong University of Technology from 2016 to 2021 and conducted research as a visiting Ph.D. student at Binghamton University from 2019 to 2021. Her work centers on interface and bulk regulation of Ni-rich layered cathode materials to enhance their electrochemical performance, stability, and efficiency. She has published more than ten papers as the first author in international journals, including Journal of Power Sources, ACS Applied Materials & Interfaces, and Applied Materials Today, and authored the book β€œLithium-ion Battery Nickel-based Layered Cathode Materials and Its Modifications.” Her research is supported by multiple ongoing projects, including participation in the National Natural Science Foundation of China, as principal investigator of the Ph.D. Startup Fund at Yibin Vocational and Technical College, and leadership of the Academician Ouyang Minggao Workstation Youth Talent Development Fund. With an h-index of ten, she continues to contribute to the advancement of sustainable energy storage materials and innovative solutions for next-generation lithium-ion batteries.

Profile: Scopus | Orcid

Featured Publications

  • Fan, Q., Li, X., Cheng, Y., Hu, Y., Ma, W., & Chen, Z. (2025). Enhanced cycling stability of nickel-rich single-crystal LiNi0.83Co0.12Mn0.05O2 at high voltage via low-temperature epitaxial rock-salt interface engineering. Journal of Materials Science.

  • Fan, Q., Li, X., Cheng, Y., Hu, Y., Ma, W., Almuqrin, A. H., Alodhayb, A. N., Chen, Z., & Shi, Z. (2025). Comprehensive investigation of the impact of calcination temperature-induced Li/Ni mixing on LiNi0.8Mn0.1Co0.1O2. Materials Today Energy.

  • Fan, Q., Chen, Z., Ma, W., & Shi, Z. (2025). Examining the collaborative impact of a heterojunction TiO2 coating and Ti substitution on LiNi0.8Co0.1Mn0.1O2 via a single-step modification approach. Applied Materials Today.

  • Fan, Q. (2021). Heterojunction TiO2@TiOF2 nanosheets as superior anode materials for sodium-ion batteries. Journal of Materials Chemistry A.

  • Fan, Q., Lin, K., Guan, S., Chen, J., Feng, S., Liu, L., & Shi, Z. (2021). Constructing high conductive composite coating with TiN and polypyrrole to improve the performance of LiNi0.8Co0.1Mn0.1O2 at high cutoff voltage of 4.5 V. ACS Applied Energy Materials.

  • Fan, Q. (2021). Can greener Cyrene replace NMP for electrode preparation of NMC 811 cathodes? Journal of The Electrochemical Society.

 

 

 

Dr. Guangxing Guo | Renewable Energy | Best Academic Researcher Award

Dr. Guangxing Guo | Renewable Energy | Best Academic Researcher Award

Dr. Guangxing Guo | Yangzhou University | China

Dr. Guangxing Guo is a dedicated researcher in the field of wind energy with strong academic training and impactful contributions. He is pursuing a Doctor of Engineering degree at Yangzhou University, focusing on the application of artificial intelligence in wind energy, and also gained international academic exposure as a guest student at Aalborg University, Denmark. He earned a Master of Engineering degree from the Institute of Engineering Thermophysics, Chinese Academy of Sciences, where his research centered on the structural performance of wind turbine blades, and a Bachelor of Engineering in New Energy Science and Engineering from Lanzhou University of Technology. His expertise covers aerodynamics, aeroelastic dynamics, structural dynamics, and computational fluid dynamics. To date, he has published 8 documents, including SCI-indexed works in Composite Structures, Sustainable Energy Technologies and Assessments, and Energies. His research has received 90 citations by 75 documents, with an h-index of 5, demonstrating growing academic recognition. He has also presented his work at international conferences, highlighting contributions to wind turbine blade design, wind farm noise reduction, and machine learning-based performance evaluation.

Profile: Scopus | Orcid

Featured Publications

Guo, G., Zhu, W., Sun, Z., Fu, S., Shen, W., & Hua, Y. (2025). Large wind turbine blade design with mould sharing concept based on deep neural networks. Sustainable Energy Technologies and Assessments, 73, 104131.

Guo, G., Zhu, W., Zhang, Z., Shen, W., & Chen, Z. (2025). Achieving power-noise balance in wind farms by fine-tuning the layout with reinforcement learning. Energies, 18(18), 5019.

Guo, G., Zhu, W., Sun, Z., Fu, S., Shen, W., & Cao, J. (2024). An aero-structure-acoustics evaluation framework of wind turbine blade cross-section based on gradient boosting regression tree. Composite Structures, 337, 118055.

Guo, G., Zhu, W., Sun, Z., Shen, W., Cao, J., & Fu, S. (2023). Drag reducer design of wind turbine blade under flap-wise fatigue testing. Composite Structures, 318, 117094.

Zhu, W., Liu, J., Sun, Z., Cao, J., Guo, G., & Shen, W. (2022). Numerical study on flow and noise characteristics of an NACA0018 airfoil with a porous trailing edge. Sustainability, 15(1), 275.

Li, S., Zhang, L., Xu, J., Yang, K., Song, J., & Guo, G. (2020). Experimental investigation of a pitch-oscillating wind turbine airfoil with vortex generators. Journal of Renewable and Sustainable Energy, 12(6), 063304.

Mr. Yohannes Shuka Jara | Renewable Energy | Best Researcher Award

Mr. Yohannes Shuka Jara | Renewable Energy | Best Researcher Award

Mr. Yohannes Shuka Jara | Borana University | Ethiopia

Mr. Yohannes Shuka Jara is a dedicated lecturer and researcher in the Department of Chemistry at Borana University, Ethiopia, with a strong academic and professional trajectory in physical chemistry and sustainable nanotechnology. Currently pursuing a PhD at the University of Messina, Italy, he holds an MSc in Physical Chemistry from Hawassa University and a BSc in Chemistry from Dilla University. His professional experience includes serving as Lecturer of Physical Chemistry at Borana University, Chief-in Laboratory Chemist, and Senior Lab Technical Assistant at Madda Walabu University, where he contributed significantly to research and laboratory management. His research primarily focuses on the green synthesis of nanoparticles and metal oxide semiconductors for sustainable applications, including green energy conversion, electrochemical and bio-nano sensors, catalysis design, and environmental remediation. Notable projects include biosynthesized N-Zn co-doped CuO nanoparticles for photocatalytic dye degradation, polyaniline-coated nanocomposites for enhanced microbial fuel cell efficiency, and activated carbon from Vernonia amygdalina for water purification. With 50 citations across 49 documents and an h-index of 2, Mr. Jara actively engages with the scientific community through platforms such as ORCID, ResearchGate, Scopus, and LinkedIn, demonstrating a strong commitment to advancing sustainable chemistry and nanotechnology solutions.

Profile: Scopus | Orcid

Featured Publications

Jara, Y. S., Mohammed, E. T., & Mekiso, T. T. (2025). Biosynthesized pure CuO, N-CuO, Zn-CuO, and N-Zn-CuO nanoparticles for photocatalytic activity: Enhanced optical properties through bandgap engineering. Next Materials.

Shuka, Y. (2025). Investigation of energy efficiency in a zeolite-water adsorption solar cooling system utilizing locally sourced materials for the conservation chamber. Physical Science International Journal.

Eyoel, T., Shuka, Y., Tadesse, S., Tesfaye, T., Mengesha, M., & Mert, S. O. (2025). Green energy: Power generation improvement in microbial fuel cells using bio-synthesized polyaniline-coated Co3O4 nanocomposite. International Journal of Energy Research.

Tesfaye, T., Shuka, Y., Tadesse, S., Eyoel, T., & Mengesha, M. (2025). Improving the power production efficiency of microbial fuel cell by using biosynthesized polyaniline-coated Fe3O4 as pencil graphite anode modifier. Scientific Reports.

Jara, Y. S., Mekiso, T. T., & Washe, A. P. (2024). Highly efficient catalytic degradation of organic dyes using iron nanoparticles synthesized with Vernonia amygdalina leaf extract. Scientific Reports.

Mengesha, M., Shuka, Y., Eyoel, T., & Tesfaye, T. (2024). Novel biomaterial-derived activated carbon from Lippia adoensis (Var. Koseret) leaf for efficient organic pollutant dye removal from water solution. American Journal of Applied Chemistry, 12(2), 11.

Jara, Y. S., & Gari, A. N. (2023). The impact of land use types on soil physicochemical properties and agricultural productivity: A case of Gojera Kebele, Dinsho District, South Eastern Ethiopia. Research Square.

Dr. Goutam Khankari | Sustainable Engineering | Best Researcher Award

Dr. Goutam Khankari | Sustainable Engineering | Best Researcher Award

Dr. Goutam Khankari | Damodar Valley Corporation | India

Dr. Goutam Khankari is a distinguished researcher and engineer specializing in thermal power systems. His PhD research, titled β€œThermodynamic Analysis and Performance Improvement of Coal-Fired Thermal Power Plants,” focused on a comprehensive 4-E approachβ€”Energy, Exergy, Environment, and Economic analysisβ€”of various coal-fired steam power plants using high-ash Indian coals. The primary objective of his work was to enhance the overall efficiency and net power output of these plants by exploiting low-grade waste energy through the Kalina Cycle System, integrating solar energy, and optimizing operational conditions. Dr. Khankari’s research not only provides critical insights into energy and exergy efficiencies but also emphasizes sustainable practices and environmental considerations in coal-based power generation. His work has been widely recognized, reflected in 97 citations across 88 documents and an h-index of 5, demonstrating significant academic influence. Through his innovative approaches to performance improvement and waste energy utilization, Dr. Khankari has contributed meaningfully to the field of thermal engineering, offering practical solutions for maximizing energy output while minimizing environmental impact in India’s coal-fired power sector.

Profile: Scopus | Google Scholar

FeaturedΒ  Publications

Khankari, G., & Karmakar, S. (2016). Power generation from coal mill rejection using Kalina cycle. Journal of Energy Resources Technology, 138(5), 052004.

Khankari, G., Munda, J., & Karmakar, S. (2016). Power generation from condenser waste heat in coal-fired thermal power plant using Kalina cycle. Energy Procedia, 90, 613–624.

Khankari, G., & Karmakar, S. (2018). Power generation from fluegas waste heat in a 500 MWe subcritical coal-fired thermal power plant using solar assisted Kalina Cycle System 11. Applied Thermal Engineering, 138, 235–245.

Khankari, G., & Karmakar, S. (2021). A novel solar assisted Kalina cycle system for waste heat utilization in thermal power plants. International Journal of Energy Research, 45(12), 17146–17158.

Roge, N. H., Khankari, G., & Karmakar, S. (2022). Waste heat recovery from fly ash of 210 MW coal fired power plant using organic rankine cycle. Journal of Energy Resources Technology, 144(8), 082107.

Khankari, G., & Karmakar, S. (2014). Operational optimization of turbo-generator (TG) cycle of a 500MW coal-fired thermal power plant. In 2014 6th IEEE Power India International Conference (PIICON) (pp. 1–6).

Khankari, G., Karmakar, S., Pramanick, A., & Biswas, M. (2013). Thermodynamic analysis of a 500MW coal-fired Indian power plant. In ESMOC Conference, NIT Durgapur, India.

Dr. Iman Soltani | Green Technologies | Best Researcher Award

Dr. Iman Soltani | Green Technologies | Best Researcher Award

Dr. Iman Soltani | Imam Khomeini International University | Iran

Dr. Iman Soltani is a distinguished researcher in Electrical Engineering with expertise in renewable energy, power electronics, and electric vehicle technologies. He holds a doctorate in Power Engineering from Malek Ashtar University of Technology, preceded by a master’s degree from Imam Khomeini International University and a bachelor’s degree in Robotic Engineering from Shahrood University of Technology. His research encompasses energy management, storage systems, electrical machines, and advanced control algorithms. With a focus on battery charging systems and the optimization of power inductors, Dr. Soltani combines academic excellence with practical innovation, driving forward advancements in sustainable and efficient energy solutions.

Professional Profile

Google Scholar | Scopus

Education and Experience

Dr. Soltani earned his doctorate in Electrical Engineering with a focus on the analysis and optimization of variable power inductors in radio frequency applications. His master’s research explored intelligent methods for maximum power point tracking in solar arrays under diverse conditions. His bachelor’s work centered on designing and controlling multi-degree-of-freedom robotic systems. Throughout his academic journey, he has developed strong expertise in renewable energy, energy storage, control systems, and power electronics. His professional experience integrates theoretical research with hands-on engineering applications, enabling him to contribute innovative and impactful solutions to modern energy and automation challenges.

Summary Suitability

Dr. Iman Soltani stands out as an exceptional candidate for the Best Researcher Award in the field of Electrical Engineering, with specialized expertise in renewable energy systems, power electronics, and advanced control methodologies. His academic journey spans a doctorate in Power Engineering, a master’s degree in the same discipline, and a bachelor’s in Robotic Engineering, each marked by exceptional academic performance and impactful research.

Professional Development

Dr. Soltani has advanced his professional capabilities through extensive research, collaborative projects, and continuous engagement with emerging technologies. His expertise includes renewable energy integration, electric mobility solutions, and intelligent control systems. He has worked extensively on energy storage technologies, advanced battery charging methods, and energy management strategies. His professional growth is marked by interdisciplinary collaboration, knowledge exchange, and the application of innovative engineering principles to real-world problems. Dedicated to staying at the forefront of technological advancements, he continually enhances his skills, ensuring his contributions align with the evolving needs of sustainable power systems and advanced electrical engineering solutions.

Research Focus

Dr. Soltani’s research focus lies in the area of electrical power and renewable energy systems, closely linked with power electronics and advanced control. He investigates the integration of renewable sources into the power grid, efficient storage systems, and smart charging technologies for electric vehicles. His work includes developing algorithms for energy optimization, improving battery performance, and enhancing the efficiency of electrical machines and drives. Additionally, he explores the behavior and optimization of power inductors in high-frequency applications. His research bridges the gap between theory and application, contributing to the creation of sustainable, reliable, and efficient modern energy systems.

Awards and Honors

Dr. Soltani has been recognized for his exceptional academic performance and innovative research contributions. His work has earned commendations from academic institutions for its originality, technical depth, and practical value in the field of renewable energy and power engineering. He has consistently maintained a record of excellence throughout his educational and professional journey, demonstrating leadership in research and a commitment to advancing sustainable technologies. His achievements reflect both intellectual rigor and a dedication to developing solutions that address the pressing challenges in energy systems and electrical engineering.

Publication Top Notes

Title: An intelligent, fast and robust maximum power point tracking for proton exchange membrane fuel cell
Year: 2013
Citation: 30

Title: A detailed comparison between FOC and DTC methods of a permanent magnet synchronous motor drive
Year: 2015
Citation: 28

Title: Optimal placement of STATCOM to voltage stability improvement and reduce power losses by using QPSO algorithm
Year: 2013
Citation: 26

Title: Eagle strategy based maximum power point tracker for fuel cell system
Year: 2015
Citation: 19

Title: Various types of particle swarm optimization-based methods for harmonic reduction of cascade multilevel inverters for renewable energy sources
Year: 2013
Citation: 14

Title: A new sliding mode controller for DC/DC converters in photovoltaic systems
Year: 2013
Citation: 14

Title: Comparative of islanding detection passive methods for distributed generation application
Year: 2014
Citation: 11

Conclusion

With a proven record of high-impact publications, interdisciplinary innovation, and the ability to translate complex engineering concepts into practical solutions, Dr. Soltani exemplifies the qualities of a world-class researcher. His dedication to advancing clean energy technologies and his consistent scholarly excellence make him a highly deserving recipient of the Best Researcher Award.

Dr. Moustafa Magdi Ismail Mohamed | Renewable Energy | Transportation Research Award

Dr. Moustafa Magdi Ismail Mohamed | Renewable Energy | Transportation Research Award

 

Dr. Moustafa Magdi Ismail Mohamed , King Fahd University of Petroleum and Minerals , Saudi Arabia

Dr. Moustafa Magdi Ismail Mohamed πŸŽ“ is an accomplished Assistant Professor of Electrical Engineering ⚑ at Minia University, Egypt, he brings a rich background in teaching, research, and academic leadership. Passionate about sustainable energy 🌱, smart grids πŸ’‘, and electric vehicles πŸš—πŸ”‹, Dr. Moustafa has made significant strides in these fields. His contributions include guiding graduate projects, publishing scholarly articles πŸ“š, and serving as a top reviewer for IEEE journals πŸ…. Dedicated to innovation and education, he actively participates in curriculum design and lab supervision, all while promoting quality assurance in engineering education πŸ› οΈπŸ‘¨β€πŸ«.

Publication Profile

Google Scholar

Education & ExperienceΒ 

  • πŸŽ“ Assistant Professor, Minia University, Egypt (Aug 2021 – Present)

    • Teaching & curriculum design for Electrical Engineering

    • Supervision of graduate projects, labs, and quality systems

  • πŸŽ“ Assistant Professor, Higher Institute of Engineering and Technology – New Minya (Oct 2021 – Jan 2022)

    • Delivered technical courses across various levels

  • πŸ‘¨β€πŸ« Assistant Lecturer, Minia University (Since Oct 2011)

  • πŸŽ“ Academic Qualifications: PhD in Electrical Engineering (details not provided here, assumed complete)

Suitability summary

Dr. Moustafa Magdi Ismail Mohamed’s work aligns seamlessly with the goals of the Transportation Research Award, having made transformative contributions to electric transportation technologies. As an Assistant Professor of Electrical Engineering at Minia University, Egypt, he has pioneered research in Permanent Magnet Synchronous Motor (PMSM) control, battery management systems, predictive EV drive control, and AI-based optimization techniquesβ€”all key elements that enhance the efficiency, reliability, and intelligence of transportation systems. πŸ“ˆπŸ”ŒπŸš˜

Professional DevelopmentΒ 

Dr. Moustafa continually invests in his professional growth πŸ“ˆ. With a strong foundation in renewable energy systems β˜€οΈ and electric mobility βš™οΈ, he keeps pace with emerging technologies through ongoing research and academic engagement. He actively contributes to scholarly dialogue by publishing in prestigious journals and reviewing for top IEEE Transactions titles πŸ§ πŸ“„. He also attends conferences, workshops, and faculty development programs focused on e-learning πŸ’» and energy sustainability 🌍. As an academic supervisor for graduate programs, he nurtures the next generation of engineers while remaining deeply engaged in his own development and that of the educational systems around him πŸ“šπŸŒ.

Research Focus

Dr. Moustafa’s research centers on sustainable and smart energy solutions ⚑🌱. His focus spans renewable energy integration 🌞, net-zero energy buildings 🏘️, electric vehicle (EV) charging networks πŸš—πŸ”Œ, and battery management systems πŸ”‹. He explores the use of control systems, power electronics, and machine learning πŸ€– to enhance grid stability and efficiency. His projects often address national and global challenges in clean energy and energy policy πŸŒπŸ“Š. With a commitment to environmental impact and technological innovation, he contributes both theoretical insight and practical solutions to advance green engineering and intelligent energy infrastructures πŸ§ πŸ’‘.

Awards and HonorsΒ 

  • πŸ… Recognized as a Top Reviewer in multiple IEEE Transactions journals

  • πŸ₯‡ Multiple research publications cited on Google Scholar and ResearchGate

  • πŸŽ–οΈ Academic excellence acknowledged in faculty committees and university boards

  • 🌟 Active contributor to international research communities and engineering networks

Publication Top Notes

  • Adaptive Speed Control of PMSM Drive System Based on a New Sliding-Mode Reaching Law
    IEEE Transactions on Power Electronics, Vol. 35, No. 11, 2020 – Citations: 329
    ➀ Developed a robust sliding-mode control law for PMSM drives.

  • 🧬 Parameter Optimization of Adaptive Flux-Weakening Strategy for PMSM Drives Using Particle Swarm Algorithm
    IEEE Transactions on Power Electronics, Vol. 34, No. 12, 2019 – Citations: 93
    ➀ Enhanced PMSM efficiency using swarm intelligence-based tuning.

  • πŸŒ€ Torque Ripple Reduction Strategy for Surface-Mounted PMSMs in Flux-Weakening Region Using Genetic Algorithm
    IEEE Transactions on Industry Applications, 2021 – Citations: 25
    ➀ Optimized torque performance using GA-based control refinement.

  • ⚑ Fast Terminal Reaching Law-Based Composite Speed Control for PMSM Drives
    IEEE Access, 2022 – Citations: 23
    ➀ Introduced a fast-reacting composite controller for high-speed applications.

  • πŸ“ˆ Adaptive Linear Predictive Model for Improved PMSM Control Across Speed Regions
    IEEE Transactions on Power Electronics, 2022 – Citations: 21
    ➀ Delivered a flexible predictive control model for dynamic conditions.

  • πŸ”„ Low-Complexity Model Predictive Current Control for Three-Level Inverter-Fed Linear Induction Machines
    IEEE Transactions on Industrial Electronics, 2022 – Citations: 20
    ➀ Proposed a simplified and efficient control method for LIMs.

  • 🏠 Optimal Residential Microgrid Planning Using Demand Response and ABC Algorithm
    IEEE Access, Vol. 10, 2022 – Citations: 14
    ➀ Integrated smart grid optimization with artificial bee colony technique.

  • πŸ”Œ Optimal EV and DG Integration into CIGRE’s MV Benchmark Model
    IEEE Access, Vol. 10, 2022
    ➀ Evaluated EV and DG coordination strategies in modern power systems.

Conclusion

Dr. Moustafa Magdi Ismail Mohamed’s research makes a direct and valuable impact on the transportation sector, offering real-world solutions for electric mobility and smart transport systems. His blend of academic excellence, applied innovation, and visionary thinking exemplifies the spirit of the Transportation Research Award. Recognizing him with this award would honor a career dedicated to transforming how we power, control, and advance transportation in the era of sustainability. πŸ†πŸŒŽπŸš™