Dr. Aamir Ali | Smart Grid Systems | Best Researcher Award

Dr. Aamir Ali | Smart Grid Systems | Best Researcher Award

Dr. Aamir Ali | Quaid-e-Awam University of Engineering Science and Technology | Pakistan

Dr. Aamir Ali is currently serving as an Assistant Professor (BPS-19) in the Department of Electrical Engineering at Quaid-e-Awam University of Engineering, Science and Technology (QUEST), Nawabshah, Sindh, Pakistan. He is a highly dedicated academic and researcher specializing in power system planning and optimization, distributed generation, and microgrid operations in both islanded and grid-connected modes. Dr. Ali earned his Ph.D. in Electrical Engineering from QUEST in 2020, where his doctoral research focused on single and multi-objective mathematical programming, direct search evolutionary algorithms, and optimization techniques for economic dispatch, optimal power flow, and unit commitment with renewable energy integration such as wind and solar PV systems. Prior to his doctorate, he completed his Master of Engineering in Power System Optimization from the same institution in 2015 and his Bachelor of Engineering in Electrical Power with an outstanding 85% score in 2012. His academic journey began with strong foundational performance at the intermediate and matriculation levels, both from the Board of Intermediate and Secondary Education, Hyderabad, Sindh, where he secured first division and A-1 grade distinctions. With 445 citations by 342 documents, 27 published works, and an h-index of 11, Dr. Aamir Ali has established himself as an active researcher in power systems optimization. He aspires to continue contributing to academia and research while leading a top-tier institution toward excellence in education and innovation.

Profile: Scopus | Orcid

Featured Publications

Akbar Talani, R., Kaloi, G. S., Ali, A., Abbas, G., Emara, A., & Touti, E. (2025, July 29). Fault analysis and performance improvement of grid-connected doubly fed induction generator through an enhanced crowbar protection scheme. PLOS One.

Ali, A., Akbar Talani, R., Kaloi, G. S., Bijarani, M. A., Abbas, G., Hatatah, M., Mercorelli, P., & Touti, E. (2025, January 29). Dynamic performance analysis and fault ride-through enhancement by a modified fault current protection scheme of a grid-connected doubly fed induction generator. Machines, 13(2).

Ali, A., Ali, A., Liu, Z., Abbas, G., Touti, E., & Nureldeen, W. (2024). Dynamic multi-objective optimization of grid-connected distributed resources along with battery energy storage management via improved bidirectional coevolutionary algorithm. IEEE Access.

Ali, A., Shah, A., Keerio, M. U., Mugheri, N. H., Abbas, G., Touti, E., Hatatah, M., Yousef, A., & Bouzguenda, M. (2024). Multi-objective security constrained unit commitment via hybrid evolutionary algorithms. IEEE Access.

Abbas, G., Wu, Z., & Ali, A. (2024, December). A two-stage reactive power optimization method for distribution networks based on a hybrid model and data-driven approach. IET Renewable Power Generation.

Ali, A., Aslam, S., Mirsaeidi, S., Mugheri, N. H., Memon, R. H., Abbas, G., & Alnuman, H. (2024, December). Multi-objective multiperiod stable environmental economic power dispatch considering probabilistic wind and solar PV generation. IET Renewable Power Generation.

Prof. Yangjun Zhang | Energy Storage Solutions | Best Researcher Award

Prof. Yangjun Zhang | Energy Storage Solutions | Best Researcher Award

Prof. Yangjun Zhang | Tsinghua University | China

Prof. Yangjun Zhang, Hubei Province, is a distinguished scholar in aeroengine engineering. He earned his doctoral degree from the Beijing University of Aeronautics and Astronautics and completed postdoctoral research at Tsinghua University. He advanced through academic ranks to become a full professor. His pioneering contributions span aerothermodynamics, turbocharging systems, and turboelectric power systems. Prof. Zhang developed China’s first high-pressure ratio turbocharging system and the first turbo-electric fan engine. He has published hundreds of papers, written several books, and holds numerous national and international patents. He currently serves in leading academic and professional committee roles worldwide.

Professional Profile

Scopus

Education and Experience

Prof. Yangjun Zhang received his doctoral degree in aeroengine engineering from the Beijing University of Aeronautics and Astronautics. After completing his postdoctoral work at Tsinghua University, he entered academia as an associate professor and later became a full professor. Over the course of his career, he has conducted groundbreaking research in turbomachinery aerothermodynamics and advanced power systems. His achievements include innovations in turbocharged engines and the development of turboelectric propulsion systems. He now serves as the executive deputy director of the State Key Laboratory of Intelligent Green Vehicle and Mobility, while remaining a global leader in propulsion and energy research.

Summary Suitability

Prof. Yangjun Zhang is an outstanding candidate for the Best Researcher Award, recognized for his pioneering contributions to aeroengine engineering, turbomachinery aerothermodynamics, and advanced power systems. His research bridges fundamental science and engineering applications, significantly advancing both the automotive and aerospace sectors.Prof. Zhang’s early research uncovered novel flow mechanisms in turbocharged engine systems, leading to innovative methods that enhanced compressor stability. These breakthroughs enabled the successful development of China’s first high-pressure ratio turbocharging system.

Professional Development

Prof. Yangjun Zhang has advanced the field of propulsion through academic leadership, innovative research, and professional service. He has published extensively, authored multiple books, and secured a wide range of patents. His editorial role as one of the editors-in-chief of the International Journal of Fluid Machinery and Systems highlights his global academic influence. In addition, he holds prominent leadership positions in major scientific and engineering societies, including chairing committees on new energy power technology and serving as vice chair of professional organizations in engineering thermophysics. His leadership has fostered international collaboration and strengthened academic and industrial progress.

Research Focus

Prof. Yangjun Zhang focuses on aerothermodynamics of turbomachinery and advanced power systems with applications in aerospace and automotive industries. His early work revealed new flow mechanisms in turbocharged engine systems and introduced innovative methods to enhance compressor stability. His more recent research explores turboelectric power systems, where he developed integrated design methods for turbomachines and electric machines with multiphysics coupling. His achievements include high-power-density motor cooling innovations using flat heat pipes and the concept of a variable cycle fuel cell turbo-electric engine. He led the creation of China’s first high-pressure ratio turbocharging system and the first turbo-electric fan engine.

Awards and Honors

Prof. Yangjun Zhang has received numerous prestigious awards for his exceptional contributions to engineering. His honors include recognition from leading international engineering societies for best research papers, medals for outstanding innovation, and national awards for scientific and technological progress. His achievements have also been celebrated with distinguished engineer awards and prizes for excellence in industry applications. These accolades reflect his global influence and leadership in propulsion, turbomachinery, and advanced power systems research, establishing him as a highly respected authority and one of the most impactful scholars in his field.

Publication Top notes

Title: ME-NN: a modal-enhanced neural network for ducted fan flow fields and performance modeling under complex environments
Year: 2024

Conclusion

Prof. Yangjun Zhang’s sustained research excellence, groundbreaking innovations, and international leadership make him a highly suitable candidate for the Best Researcher Award. His work not only pushes the boundaries of propulsion and energy systems but also strengthens global collaboration and technological progress, embodying the very spirit of this distinguished recognition.