Dr. Zahra Beheshti | AI in Engineering | Best Researcher Award

Dr. Zahra Beheshti | AI in Engineering | Best Researcher Award

Dr. Zahra Beheshti | Islamic Azad University | Iran

Dr. Zahra Beheshti is an Assistant Professor at the Islamic Azad University, Najafabad Branch, with a distinguished background in computer engineering and artificial intelligence. She holds a B.Sc. and M.Sc. in Computer Engineering (Software) and a Ph.D. in Computer Science with a focus on Artificial Intelligence, followed by postdoctoral research in Soft Computing. Dr. Beheshti has made significant contributions to the field, including the compilation of the book Centripetal Accelerated Particle Swarm Optimization and Applications. Her academic excellence has been recognized through scholarships awarded to top international Ph.D. students. She is actively involved in knowledge dissemination, having conducted multiple workshops on advanced topics such as Machine Learning, Fuzzy Expert Systems and their application in algorithm parameter determination, and Introduction to Fuzzy Logic along with the Design and Implementation of Fuzzy Expert Systems. Her research output includes 34 documents, cited 1,865 times by 1,698 publications, with an h-index of 20, reflecting the significant impact of her work. Through her teaching, research, and publications, Dr. Beheshti demonstrates a strong commitment to advancing computational intelligence, fostering innovation, and mentoring the next generation of researchers in AI and soft computing, combining both academic rigor and practical application.

Profile: Scopus | Google Scholar | Orcid

Featured Publications

  • Z Beheshti, SMH Shamsuddin, A review of population-based meta-heuristic algorithms, Int. J. Adv. Soft Comput. Appl 5 (1), 1-35, 744 citations, 2013

  • H Abedinpourshotorban, SM Shamsuddin, Z Beheshti, DNA Jawawi, Electromagnetic field optimization: a physics-inspired metaheuristic optimization algorithm, Swarm and Evolutionary Computation 26, 8-22, 414 citations, 2016

  • M Jafarzadegan, F Safi-esfahani, Z Beheshti, Combining Hierarchical Clustering approaches using the PCA Method, Expert Systems with Applications 137, 1-10, 156 citations, 2019

  • Z Beheshti, SM Shamsuddin, S Hasan, Memetic binary particle swarm optimization for discrete optimization problems, Information Sciences 299, 58-84, 129 citations, 2015

  • Z Beheshti, SMH Shamsuddin, CAPSO: centripetal accelerated particle swarm optimization, Information Sciences 258, 54-79, 120 citations, 2014

  • M Banaie-Dezfouli, MH Nadimi-Shahraki, Z Beheshti, R-GWO: Representative-based grey wolf optimizer for solving engineering problems, Applied Soft Computing 106, 1-28, 108 citations, 2021

 

 

Mr. Bimal Kumar Dora | AI in Engineering | Best Researcher Award

Mr. Bimal Kumar Dora | AI in Engineering | Best Researcher Award

Mr. Bimal Kumar Dora | Visvesvaraya National Institute of Technology | India

Mr. Bimal Kumar Dora is a dedicated researcher in Electrical Engineering, currently pursuing his Doctor of Philosophy at Visvesvaraya National Institute of Technology, Nagpur, after completing his Master of Technology in Control, Power and Electric Drives from the National Institute of Technology, Sikkim, and a Bachelor of Technology in Electrical Engineering from Biju Patnaik University of Technology, Odisha. He recently broadened his international research experience as a Visiting Researcher at the Montefiore Institute, University of Liège, Belgium, where he contributed to advanced studies in renewable energy integration and the development of global electricity grids. His doctoral research, titled Global Electricity Interconnection with Renewable Energy Generation, emphasizes methods such as the Enhanced Critical Time Window Framework, Weibull distribution analysis, and temporal variability indexing to identify and optimize renewable energy sites across Indian onshore and offshore regions. He has designed several innovative hybrid algorithms including Modified Pelican Optimization Algorithm, Novel Modified Pelican Driven Optimization Algorithm, Enhanced Pelican Foraging Algorithm, Enhanced Dragonfly and Moth Optimization Algorithm, Modified Reptile Optimization Algorithm, Modified Harris Hawk and Pelican Optimization Algorithm, and Enhanced Harris Hawk and Pelican Optimization Algorithm.  With 97 citations from 75 documents, 16 publications, and an index rating of 7, he is building a growing academic reputation that combines computational intelligence, renewable energy, and futuristic large-scale power system design.

Featured Publications

  1. Dora, B. K., Rajan, A., Mallick, S., & Halder, S. (2023). Optimal reactive power dispatch problem using exchange market based butterfly optimization algorithm. Applied Soft Computing, 147, 110833.

  2. Halder, S., Bhat, S., & Dora, B. K. (2022). Inverse thresholding to spectrogram for the detection of broken rotor bar in induction motor. Measurement, 198, 111400.

  3. Halder, S., Bhat, S., & Dora, B. (2023). Start-up transient analysis using CWT and ridges for broken rotor bar fault diagnosis. Electrical Engineering, 105(1), 221–232.

  4. Halder, S., Dora, B. K., & Bhat, S. (2022). An enhanced pathfinder algorithm based MCSA for rotor breakage detection of induction motor. Journal of Computational Science, 64, 101870.

  5. Dora, B. K., Bhat, S., Halder, S., & Srivastava, I. (2024). A solution to multi objective stochastic optimal power flow problem using mutualism and elite strategy based pelican optimization algorithm. Applied Soft Computing, 158, 111548.

  6. Dora, B. K., Bhat, S., Halder, S., & Sahoo, M. (2023). Solution of reactive power dispatch problems using enhanced dwarf mongoose optimization algorithm. 2023 International Conference for Advancement in Technology (ICONAT), 1–6.