Mr. Ahmad Usman | Sustainable Engineering | Best Researcher Award

Mr. Ahmad Usman | Sustainable Engineering | Best Researcher Award

Mr. Ahmad Usman | Cranfield University | United Kingdom

Mr. Ahmad Usman is a dedicated PhD student at Cranfield University specializing in coating and corrosion science, with a strong focus on developing advanced materials to protect critical components in power plants under demanding conditions. His research encompasses the fireside-corrosion behavior of thermally sprayed and Ni-based coatings in challenging environments, including chlorine-rich combustion atmospheres, and investigates oxidation, erosion, and wear mechanisms at the microscopic level. Mr. Usman has contributed to advancing knowledge on thermal spray coatings through both academic and industry projects, including his role as Group Innovation Engineer at Welding Alloys Group, UK, and collaborations with the National High Temperature Surface Engineering Centre. He has co-authored book chapters on self-healing elastomers and polymeric paints and coatings, highlighting his expertise in functional polymers. His research interests include real-time monitoring of coating degradation, modeling corrosion kinetics in waste-to-energy (WtE) environments, and optimizing thermal spray coatings to resist high-temperature corrosion, erosion, and wear damage. With a growing citation record and an h-index of 2, Mr. Usman is an active member of the Institute of Corrosion and the Pakistan Engineering Council, demonstrating his commitment to both academic excellence and industrial innovation, while consistently exploring innovative solutions to extend the lifespan and reliability of critical energy infrastructure.

Profile: Orcid

Featured Publications

Usman, A., Syed, A., Isern Arrom, L., Nicholls, J., & Cordero, M. (2024, September 5). Degradation of novel coating systems for heat exchanger materials for WtE power plant applications [Conference poster]. EUROCORR 2024, Cranfield University.

Rehan, Z. A., & Usman, A. (2023). Polymeric paints and coatings. In Advanced Functional Polymers. Springer.

Zubair, Z., Usman, A., & Hafeez, A. (2023). Self-healing elastomers. In Advanced Functional Polymers. Springer.

Usman, A. (2021, December 8). Fabrication of low emissivity paint thermal/NIR radiation insulation for domestic applications [Conference poster]. 1st International Conference of Polymers and Composites (ICPC-2021).

Usman, A., Isern Arrom, L., Nicholls, J., Cordero, M., & Syed, A. U. (2025). Fireside corrosion behavior of thermally sprayed coatings for waste-to-energy power plant applications. Journal of Materials Engineering and Performance.

Dr. Goutam Khankari | Sustainable Engineering | Best Researcher Award

Dr. Goutam Khankari | Sustainable Engineering | Best Researcher Award

Dr. Goutam Khankari | Damodar Valley Corporation | India

Dr. Goutam Khankari is a distinguished researcher and engineer specializing in thermal power systems. His PhD research, titled “Thermodynamic Analysis and Performance Improvement of Coal-Fired Thermal Power Plants,” focused on a comprehensive 4-E approach—Energy, Exergy, Environment, and Economic analysis—of various coal-fired steam power plants using high-ash Indian coals. The primary objective of his work was to enhance the overall efficiency and net power output of these plants by exploiting low-grade waste energy through the Kalina Cycle System, integrating solar energy, and optimizing operational conditions. Dr. Khankari’s research not only provides critical insights into energy and exergy efficiencies but also emphasizes sustainable practices and environmental considerations in coal-based power generation. His work has been widely recognized, reflected in 97 citations across 88 documents and an h-index of 5, demonstrating significant academic influence. Through his innovative approaches to performance improvement and waste energy utilization, Dr. Khankari has contributed meaningfully to the field of thermal engineering, offering practical solutions for maximizing energy output while minimizing environmental impact in India’s coal-fired power sector.

Profile: Scopus | Google Scholar

Featured  Publications

Khankari, G., & Karmakar, S. (2016). Power generation from coal mill rejection using Kalina cycle. Journal of Energy Resources Technology, 138(5), 052004.

Khankari, G., Munda, J., & Karmakar, S. (2016). Power generation from condenser waste heat in coal-fired thermal power plant using Kalina cycle. Energy Procedia, 90, 613–624.

Khankari, G., & Karmakar, S. (2018). Power generation from fluegas waste heat in a 500 MWe subcritical coal-fired thermal power plant using solar assisted Kalina Cycle System 11. Applied Thermal Engineering, 138, 235–245.

Khankari, G., & Karmakar, S. (2021). A novel solar assisted Kalina cycle system for waste heat utilization in thermal power plants. International Journal of Energy Research, 45(12), 17146–17158.

Roge, N. H., Khankari, G., & Karmakar, S. (2022). Waste heat recovery from fly ash of 210 MW coal fired power plant using organic rankine cycle. Journal of Energy Resources Technology, 144(8), 082107.

Khankari, G., & Karmakar, S. (2014). Operational optimization of turbo-generator (TG) cycle of a 500MW coal-fired thermal power plant. In 2014 6th IEEE Power India International Conference (PIICON) (pp. 1–6).

Khankari, G., Karmakar, S., Pramanick, A., & Biswas, M. (2013). Thermodynamic analysis of a 500MW coal-fired Indian power plant. In ESMOC Conference, NIT Durgapur, India.