Dr. Zhu Jingwen | AI in Engineering | Best Researcher Award

Dr. Zhu Jingwen | AI in Engineering | Best Researcher Award

Dr. Zhu Jingwen | Jiangsu University | China

Dr. Zhu Jingwen is a researcher in control science and engineering whose work focuses on intelligent detection systems and advanced sensing technologies for agricultural safety. His research emphasizes the development of nondestructive testing methods for grains and edible oils through the integration of microwave, millimeter-wave, and near-infrared technologies with chemometric modeling and machine learning algorithms. Dr. Zhu has designed FPGA-based microwave detection systems capable of accurately identifying contaminants such as heavy metals and aflatoxins, contributing significantly to the field of food safety monitoring. His studies have been widely published in respected international journals, including Microchemical Journal, Sensors and Actuators A: Physical, and Spectrochimica Acta Part A. Beyond research, he has demonstrated leadership in innovation and entrepreneurship, leading projects recognized with national honors such as the China Postgraduate “Rural Revitalization – Sci-Tech Empowering Agriculture+” Competition. His scientific contributions are reflected through 13 published documents, cited 46 times by 41 other documents, demonstrating a growing academic impact and an h-index of 5. His efforts also led to the establishment of Dongfang Xiangyu (Jiangsu) Technology Co., Ltd., translating research outcomes into practical industrial applications. With a strong command of programming and embedded system development, Dr. Zhu continues to explore interdisciplinary approaches that merge intelligent algorithms with hardware systems to advance the precision and reliability of agricultural quality assessment technologies.

Profile: Scopus

Featured Publications

Zhu, J., Deng, J., Zhao, X., Xu, L., & Jiang, H. (2024). Quantitative determination of cadmium content in peanut oil using microwave detection method combined with multivariate analysis. Microchemical Journal, 110946.

Zhu, J., Deng, J., Zhao, X., Xu, L., & Jiang, H. (2024). Accurate identification of cadmium pollution in peanut oil using microwave technology combined with SVM-RFE. Sensors and Actuators A: Physical, 368, 115085.

Zhu, J., Chen, Y., Deng, J., & Jiang, H. (2024). Improving the accuracy of FT-NIR determination of zearalenone content in wheat using a characteristic wavelength optimization algorithm. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 313, 124169.

Ji, Z., Zhu, J., Deng, J., Jiang, H., & Chen, Q. (2024). Quantitative determination of zearalenone in wheat by the CSA-NIR technique combined with chemometric algorithms. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 323, 124858.

Zhu, J., Deng, J., Xu, L., & Jiang, H. (2024). Enhancing the performance of natural pigment sensor arrays for the detection of Procymidone residues in Allium tuberosum using outcome-corrected decision-making method. Journal of Food Composition and Analysis, 128, 107059.

Mr. Bimal Kumar Dora | AI in Engineering | Best Researcher Award

Mr. Bimal Kumar Dora | AI in Engineering | Best Researcher Award

Mr. Bimal Kumar Dora | Visvesvaraya National Institute of Technology | India

Mr. Bimal Kumar Dora is a dedicated researcher in Electrical Engineering, currently pursuing his Doctor of Philosophy at Visvesvaraya National Institute of Technology, Nagpur, after completing his Master of Technology in Control, Power and Electric Drives from the National Institute of Technology, Sikkim, and a Bachelor of Technology in Electrical Engineering from Biju Patnaik University of Technology, Odisha. He recently broadened his international research experience as a Visiting Researcher at the Montefiore Institute, University of Liège, Belgium, where he contributed to advanced studies in renewable energy integration and the development of global electricity grids. His doctoral research, titled Global Electricity Interconnection with Renewable Energy Generation, emphasizes methods such as the Enhanced Critical Time Window Framework, Weibull distribution analysis, and temporal variability indexing to identify and optimize renewable energy sites across Indian onshore and offshore regions. He has designed several innovative hybrid algorithms including Modified Pelican Optimization Algorithm, Novel Modified Pelican Driven Optimization Algorithm, Enhanced Pelican Foraging Algorithm, Enhanced Dragonfly and Moth Optimization Algorithm, Modified Reptile Optimization Algorithm, Modified Harris Hawk and Pelican Optimization Algorithm, and Enhanced Harris Hawk and Pelican Optimization Algorithm.  With 97 citations from 75 documents, 16 publications, and an index rating of 7, he is building a growing academic reputation that combines computational intelligence, renewable energy, and futuristic large-scale power system design.

Featured Publications

  1. Dora, B. K., Rajan, A., Mallick, S., & Halder, S. (2023). Optimal reactive power dispatch problem using exchange market based butterfly optimization algorithm. Applied Soft Computing, 147, 110833.

  2. Halder, S., Bhat, S., & Dora, B. K. (2022). Inverse thresholding to spectrogram for the detection of broken rotor bar in induction motor. Measurement, 198, 111400.

  3. Halder, S., Bhat, S., & Dora, B. (2023). Start-up transient analysis using CWT and ridges for broken rotor bar fault diagnosis. Electrical Engineering, 105(1), 221–232.

  4. Halder, S., Dora, B. K., & Bhat, S. (2022). An enhanced pathfinder algorithm based MCSA for rotor breakage detection of induction motor. Journal of Computational Science, 64, 101870.

  5. Dora, B. K., Bhat, S., Halder, S., & Srivastava, I. (2024). A solution to multi objective stochastic optimal power flow problem using mutualism and elite strategy based pelican optimization algorithm. Applied Soft Computing, 158, 111548.

  6. Dora, B. K., Bhat, S., Halder, S., & Sahoo, M. (2023). Solution of reactive power dispatch problems using enhanced dwarf mongoose optimization algorithm. 2023 International Conference for Advancement in Technology (ICONAT), 1–6.