Prof. Ebenezer Esenogho | Artificial Intelligence | Best Researcher Award

Prof. Ebenezer Esenogho | Artificial Intelligence | Best Researcher Award

Prof. Ebenezer Esenogho | University of South Africa | South Africa

Prof. Ebenezer Esenogho (NRF C2-rated) is a distinguished academic and research leader recognized for his extensive contributions to Artificial Intelligence, telecommunications engineering, and digital innovation. With a strong background in computer, electronics, and communication engineering, he has built an influential career marked by advanced research, academic leadership, and international collaboration. He has produced impactful work across areas such as AI-driven wireless systems, 5G networks, cognitive radio, cybersecurity, IoT, smart grid technologies, software-defined systems, big data, and cloud computing. His scholarly influence is reflected in 920 citations from 762 documents, 40 published documents, and an h-index of 12. Prof. Esenogho has secured numerous competitive grants, awards, and research fellowships in recognition of his excellence, and he has contributed to global research advancement through participation in strategic committees, collaborative initiatives, and high-level innovation programs. He has supervised a wide portfolio of postgraduate researchers, contributed to editorial boards, reviewed international grant proposals, and chaired sessions at reputable conferences. Beyond research, he is committed to academic mentorship, capacity building, and advancing technology-driven development through community-focused initiatives. Prof. Ebenezer continues to play a leading role in shaping the future of intelligent systems, next-generation networks, and multidisciplinary innovation across regional and global research landscapes.

Profiles: Scopus | Orcid | Google Scholar

Featured Publications

  • Esenogho, E., Mienye, I. D., Swart, T. G., Aruleba, K., & Obaido, G. (2022). A neural network ensemble with feature engineering for improved credit card fraud detection. IEEE Access, 10, 16400–16407.

  • Esenogho, E., Djouani, K., & Kurien, A. M. (2022). Integrating artificial intelligence, Internet of Things, and 5G for next-generation smart grid: A survey of trends, challenges, and prospects. IEEE Access, 10, 4794–4831.

  • Sarah, I. D. M., Ebiaredoh-Mienye, A., Esenogho, E., & Swart, T. G. (2022). A machine learning method with filter-based feature selection for improved prediction of chronic kidney disease. Bioengineering, 9(8).

  • Nguyen, N., Duong, T., Chau, T., Nguyen, V. H., Trinh, T., Tran, D., Ho, T., … Esenogho, E. (2022). A proposed model for card fraud detection based on CatBoost and deep neural network. IEEE Access, 10, 96852–96861.

  • Arnaz, A., Lipman, J., Abolhasan, M., Hiltunen, M., … Esenogho, E. (2022). Toward integrating intelligence and programmability in open radio access networks: A comprehensive survey. IEEE Access, 10, 67747–67770.

  • Obaido, G., Ogbuokiri, B., Swart, T. G., Ayawei, N., Kasongo, S. M., Aruleba, K., … Esenogho, E. (2022). An interpretable machine learning approach for hepatitis B diagnosis. Applied Sciences, 12(21), 11127.

 

Dr. Zahra Beheshti | AI in Engineering | Best Researcher Award

Dr. Zahra Beheshti | AI in Engineering | Best Researcher Award

Dr. Zahra Beheshti | Islamic Azad University | Iran

Dr. Zahra Beheshti is an Assistant Professor at the Islamic Azad University, Najafabad Branch, with a distinguished background in computer engineering and artificial intelligence. She holds a B.Sc. and M.Sc. in Computer Engineering (Software) and a Ph.D. in Computer Science with a focus on Artificial Intelligence, followed by postdoctoral research in Soft Computing. Dr. Beheshti has made significant contributions to the field, including the compilation of the book Centripetal Accelerated Particle Swarm Optimization and Applications. Her academic excellence has been recognized through scholarships awarded to top international Ph.D. students. She is actively involved in knowledge dissemination, having conducted multiple workshops on advanced topics such as Machine Learning, Fuzzy Expert Systems and their application in algorithm parameter determination, and Introduction to Fuzzy Logic along with the Design and Implementation of Fuzzy Expert Systems. Her research output includes 34 documents, cited 1,865 times by 1,698 publications, with an h-index of 20, reflecting the significant impact of her work. Through her teaching, research, and publications, Dr. Beheshti demonstrates a strong commitment to advancing computational intelligence, fostering innovation, and mentoring the next generation of researchers in AI and soft computing, combining both academic rigor and practical application.

Profile: Scopus | Google Scholar | Orcid

Featured Publications

  • Z Beheshti, SMH Shamsuddin, A review of population-based meta-heuristic algorithms, Int. J. Adv. Soft Comput. Appl 5 (1), 1-35, 744 citations, 2013

  • H Abedinpourshotorban, SM Shamsuddin, Z Beheshti, DNA Jawawi, Electromagnetic field optimization: a physics-inspired metaheuristic optimization algorithm, Swarm and Evolutionary Computation 26, 8-22, 414 citations, 2016

  • M Jafarzadegan, F Safi-esfahani, Z Beheshti, Combining Hierarchical Clustering approaches using the PCA Method, Expert Systems with Applications 137, 1-10, 156 citations, 2019

  • Z Beheshti, SM Shamsuddin, S Hasan, Memetic binary particle swarm optimization for discrete optimization problems, Information Sciences 299, 58-84, 129 citations, 2015

  • Z Beheshti, SMH Shamsuddin, CAPSO: centripetal accelerated particle swarm optimization, Information Sciences 258, 54-79, 120 citations, 2014

  • M Banaie-Dezfouli, MH Nadimi-Shahraki, Z Beheshti, R-GWO: Representative-based grey wolf optimizer for solving engineering problems, Applied Soft Computing 106, 1-28, 108 citations, 2021

 

 

Prof. Ouajdi Korbaa | AI in Engineering | Innovative Research Award

Prof. Ouajdi Korbaa | AI in Engineering | Innovative Research Award

Prof. Ouajdi Korbaa | University of Sousse | Tunisia

Prof. Ouajdi Korbaa is a distinguished researcher and professor at the Institute of Computer Science and Communication Techniques, University of Sousse, Tunisia, and a member of the Modeling of Automated Reasoning Systems Laboratory. His research focuses on modeling, discrete optimization, scheduling, and artificial intelligence, contributing significantly to the development of advanced methodologies in these areas. He has supervised numerous Master’s and PhD students and actively participates in academic juries, reflecting his commitment to mentoring the next generation of researchers. Prof. Korbaa has authored 157 documents cited by 998 sources, achieving an h-index of 18, demonstrating his strong impact and influence in the field. His work integrates theoretical foundations with practical applications, advancing computational techniques for problem-solving and decision-making. Recognized for his expertise in optimization and AI, he has made substantial contributions to both the academic community and the broader field of computer science, fostering innovation in modeling and automated reasoning systems.

Profile: Scopus | Google Scholar | Orcid

Featured Publications

  • Nssibi, M., Manita, G., & Korbaa, O. (2023). Advances in nature-inspired metaheuristic optimization for feature selection problem: A comprehensive survey. Computer Science Review, 49, 100559.

  • Jemili, F., Meddeb, R., & Korbaa, O. (2024). Intrusion detection based on ensemble learning for big data classification. Cluster Computing, 27(3), 3771–3798.

  • Benzarti, S., Triki, B., & Korbaa, O. (2017). A survey on attacks in Internet of Things based networks. In Proceedings of the 2017 International Conference on Engineering & MIS (ICEMIS) (pp. 1–7).

  • Meddeb, R., Jemili, F., Triki, B., & Korbaa, O. (2023). A deep learning-based intrusion detection approach for mobile Ad-hoc network. Soft Computing, 27(14), 9425–9439.

  • Abid, A., Jemili, F., & Korbaa, O. (2024). Real-time data fusion for intrusion detection in industrial control systems based on cloud computing and big data techniques. Cluster Computing, 27(2), 2217–2238.

  • Korbaa, O., Camus, H., & Gentina, J. C. (1997). FMS cyclic scheduling with overlapping production cycles. In Proceedings of the 18th International Conference on Application and Theory of Automation in Technology (pp. 1–10).

  • Lee, J., & Korbaa, O. (2004). Modeling and scheduling of ratio-driven FMS using unfolding time Petri nets. Computers & Industrial Engineering, 46(4), 639–653.

  • Meddeb, R., Triki, B., Jemili, F., & Korbaa, O. (2017). A survey of attacks in mobile ad hoc networks. In Proceedings of the 2017 International Conference on Engineering & MIS (ICEMIS) (pp. 1–7).