Dr. Partha Ghosh | AI in Engineering | Best Researcher Award

Dr. Partha Ghosh | AI in Engineering | Best Researcher Award

Dr. Partha Ghosh | Netaji Subhash Engineering College | India

Dr. Partha Ghosh is a seasoned academic and researcher with more than 22 years of professional experience in Computer Science and Information Technology, currently serving as Associate Professor in the Department of Information Technology and Head of the Department of Computer Science and Business Systems at Netaji Subhash Engineering College, Kolkata. His research expertise spans Computer Networking, Machine Learning, Cloud Computing, Intrusion Detection Systems, Optimization Algorithms, Feature Selection and Classification Techniques, with a focus on developing secure, intelligent and high-performance cloud-based computational environments. His scholarly impact is reflected through 16 SCOPUS-indexed documents, 194 citations by 173 documents and an h-index of 7. Additionally, his ORCID profile lists 20 research works, and according to Google Scholar he has 333 citations (244 since 2020), an h-index of 10 (9 since 2020) and an i10-index of 10 (9 since 2020), demonstrating consistent and growing research visibility. To date, he has authored 24 publications including indexed journal papers, international conference papers and book chapters. He has taught a wide range of core and advanced courses such as Computer Organisation, Computer Networks, Advanced Computer Networking, Microprocessors and Microcontrollers and Database Management Systems at undergraduate and postgraduate levels. His academic engagement also includes serving as Editor-in-Chief and Editorial Board Member of reputed journals and holding multiple Fellow and Life Membership roles across professional bodies, underscoring his continued commitment to research innovation, knowledge dissemination and academic leadership.

Profiles: Scopus | Orcid | Google Scholar

Featured Publications

Ghosh, P., Mandal, A. K., & Kumar, R. (2015). An efficient cloud network intrusion detection system. In Information Systems Design and Intelligent Applications: Proceedings of …

Ghosh, P., Karmakar, A., Sharma, J., & Phadikar, S. (2018). CS-PSO based intrusion detection system in cloud environment. In Emerging Technologies in Data Mining and Information Security: Proceedings …

Ghosh, P., & Mitra, R. (2015). Proposed GA-BFSS and logistic regression based intrusion detection system. In Proceedings of the 2015 Third International Conference on Computer …

Ghosh, P., Sarkar, D., Sharma, J., & Phadikar, S. (2021). An intrusion detection system using modified-firefly algorithm in cloud environment. International Journal of Digital Crime and Forensics, 13(2), 77–93.

Ghosh, P., Debnath, C., Metia, D., & Dutta, R. (2015). An efficient hybrid multilevel intrusion detection system in cloud environment. IOSR Journal of Computer Engineering, 16(4), 16–26.

Ghosh, P., Shakti, S., & Phadikar, S. (2016). A cloud intrusion detection system using novel PRFCM clustering and KNN based dempster-shafer rule. International Journal of Cloud Applications and Computing, 6(4), 18–35.

Prof. Ouajdi Korbaa | AI in Engineering | Innovative Research Award

Prof. Ouajdi Korbaa | AI in Engineering | Innovative Research Award

Prof. Ouajdi Korbaa | University of Sousse | Tunisia

Prof. Ouajdi Korbaa is a distinguished researcher and professor at the Institute of Computer Science and Communication Techniques, University of Sousse, Tunisia, and a member of the Modeling of Automated Reasoning Systems Laboratory. His research focuses on modeling, discrete optimization, scheduling, and artificial intelligence, contributing significantly to the development of advanced methodologies in these areas. He has supervised numerous Master’s and PhD students and actively participates in academic juries, reflecting his commitment to mentoring the next generation of researchers. Prof. Korbaa has authored 157 documents cited by 998 sources, achieving an h-index of 18, demonstrating his strong impact and influence in the field. His work integrates theoretical foundations with practical applications, advancing computational techniques for problem-solving and decision-making. Recognized for his expertise in optimization and AI, he has made substantial contributions to both the academic community and the broader field of computer science, fostering innovation in modeling and automated reasoning systems.

Profile: Scopus | Google Scholar | Orcid

Featured Publications

  • Nssibi, M., Manita, G., & Korbaa, O. (2023). Advances in nature-inspired metaheuristic optimization for feature selection problem: A comprehensive survey. Computer Science Review, 49, 100559.

  • Jemili, F., Meddeb, R., & Korbaa, O. (2024). Intrusion detection based on ensemble learning for big data classification. Cluster Computing, 27(3), 3771–3798.

  • Benzarti, S., Triki, B., & Korbaa, O. (2017). A survey on attacks in Internet of Things based networks. In Proceedings of the 2017 International Conference on Engineering & MIS (ICEMIS) (pp. 1–7).

  • Meddeb, R., Jemili, F., Triki, B., & Korbaa, O. (2023). A deep learning-based intrusion detection approach for mobile Ad-hoc network. Soft Computing, 27(14), 9425–9439.

  • Abid, A., Jemili, F., & Korbaa, O. (2024). Real-time data fusion for intrusion detection in industrial control systems based on cloud computing and big data techniques. Cluster Computing, 27(2), 2217–2238.

  • Korbaa, O., Camus, H., & Gentina, J. C. (1997). FMS cyclic scheduling with overlapping production cycles. In Proceedings of the 18th International Conference on Application and Theory of Automation in Technology (pp. 1–10).

  • Lee, J., & Korbaa, O. (2004). Modeling and scheduling of ratio-driven FMS using unfolding time Petri nets. Computers & Industrial Engineering, 46(4), 639–653.

  • Meddeb, R., Triki, B., Jemili, F., & Korbaa, O. (2017). A survey of attacks in mobile ad hoc networks. In Proceedings of the 2017 International Conference on Engineering & MIS (ICEMIS) (pp. 1–7).