Mr. Adizue Ugonna | AI in Engineering | Best Researcher Award

Mr. Adizue Ugonna | AI in Engineering | Best Researcher Award

Mr. Adizue Ugonna | Budapest University of Technology and Economics | Hungary

Mr. Adizue Ugonna Loveday is a Doctoral Researcher and Laboratory Instructor at the Budapest University of Technology and Economics, specializing in Mechanical Engineering with expertise in industrial and production systems. His research focuses on intelligent modelling and process optimization for ultra-precision machining of hard materials, integrating artificial intelligence, tribological analysis, and thermal modeling to enhance manufacturing precision and efficiency. Professionally, he has contributed to several major research initiatives including the Horizon 2020 Centre of Excellence in Production Informatics and Control (EPIC CoE), the iNext project on industrial digitalization, and multiple Hungarian Scientific Research Fund (OTKA) projects emphasizing AI-based predictive models for advanced machining and intelligent forming processes. His scholarly record demonstrates strong research performance, with 45 citations by 42 documents, 6 documents, and an h-index of 4 in Scopus; and 66 citations, an h-index of 5, and an i10-index of 2 in Google Scholar. In addition, his ORCID profile lists 6 professional activities and 8 published works, reflecting active engagement in international research collaboration, scientific reviewing, and production editing. Through these contributions, Mr. Loveday continues to advance smart and sustainable manufacturing technologies, bridging artificial intelligence and mechanical systems design in alignment with Industry 4.0 innovation goals.

Publication Details

  1. Adizue, U. L., Tura, A. D., Isaya, E. O., Farkas, B. Z., & Takács, M. (2023). Surface quality prediction by machine learning methods and process parameter optimization in ultra-precision machining of AISI D2 using CBN tool. The International Journal of Advanced Manufacturing Technology, 128(1), 1–28.

  2. Adizue, U. L., Nwanya, S. C., & Ozor, P. A. (2020). Artificial neural network application to a process time planning problem for palm oil production. Engineering and Applied Science Research, 47(2), 161–169.

  3. Adizue, U. L., & Takács, M. (2025). Exploring the correlation between design of experiments and machine learning prediction accuracy in ultra-precision hard turning of AISI D2 with CBN insert: A comparative study. The International Journal of Advanced Manufacturing Technology, 1–30.

  4. Elly, O. I., Adizue, U. L., Tura, A. D., Farkas, B. Z., & Takács, M. (2024). Analysis, modelling, and optimization of force in ultra-precision hard turning of cold work hardened steel using the CBN tool. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 46(1), 1–18.

  5. Adizue, U. L., Balázs, B. Z., & Takács, M. (2022). Surface roughness prediction applying artificial neural network at micro machining. IOP Conference Series: Materials Science and Engineering, 1246(1), 012034.

  6. Tura, A. D., Isaya, E. O., Adizue, U. L., Farkas, B. Z., & Takács, M. (2024). Optimization of ultra-precision CBN turning of AISI D2 using hybrid GA-RSM and Taguchi-GRA statistic tools. Heliyon, 10(11), e24357.

  7. Adizue, U. L., Agbadah, S. E., Ibeagha, D. C., & Falade, Y. O. (2017). Design and construction of an automated adjustable-can foil sealing machine. International Journal of Engineering and Applied Sciences, 4(9), 257384.

 

Prof. Ouajdi Korbaa | AI in Engineering | Innovative Research Award

Prof. Ouajdi Korbaa | AI in Engineering | Innovative Research Award

Prof. Ouajdi Korbaa | University of Sousse | Tunisia

Prof. Ouajdi Korbaa is a distinguished researcher and professor at the Institute of Computer Science and Communication Techniques, University of Sousse, Tunisia, and a member of the Modeling of Automated Reasoning Systems Laboratory. His research focuses on modeling, discrete optimization, scheduling, and artificial intelligence, contributing significantly to the development of advanced methodologies in these areas. He has supervised numerous Master’s and PhD students and actively participates in academic juries, reflecting his commitment to mentoring the next generation of researchers. Prof. Korbaa has authored 157 documents cited by 998 sources, achieving an h-index of 18, demonstrating his strong impact and influence in the field. His work integrates theoretical foundations with practical applications, advancing computational techniques for problem-solving and decision-making. Recognized for his expertise in optimization and AI, he has made substantial contributions to both the academic community and the broader field of computer science, fostering innovation in modeling and automated reasoning systems.

Profile: Scopus | Google Scholar | Orcid

Featured Publications

  • Nssibi, M., Manita, G., & Korbaa, O. (2023). Advances in nature-inspired metaheuristic optimization for feature selection problem: A comprehensive survey. Computer Science Review, 49, 100559.

  • Jemili, F., Meddeb, R., & Korbaa, O. (2024). Intrusion detection based on ensemble learning for big data classification. Cluster Computing, 27(3), 3771–3798.

  • Benzarti, S., Triki, B., & Korbaa, O. (2017). A survey on attacks in Internet of Things based networks. In Proceedings of the 2017 International Conference on Engineering & MIS (ICEMIS) (pp. 1–7).

  • Meddeb, R., Jemili, F., Triki, B., & Korbaa, O. (2023). A deep learning-based intrusion detection approach for mobile Ad-hoc network. Soft Computing, 27(14), 9425–9439.

  • Abid, A., Jemili, F., & Korbaa, O. (2024). Real-time data fusion for intrusion detection in industrial control systems based on cloud computing and big data techniques. Cluster Computing, 27(2), 2217–2238.

  • Korbaa, O., Camus, H., & Gentina, J. C. (1997). FMS cyclic scheduling with overlapping production cycles. In Proceedings of the 18th International Conference on Application and Theory of Automation in Technology (pp. 1–10).

  • Lee, J., & Korbaa, O. (2004). Modeling and scheduling of ratio-driven FMS using unfolding time Petri nets. Computers & Industrial Engineering, 46(4), 639–653.

  • Meddeb, R., Triki, B., Jemili, F., & Korbaa, O. (2017). A survey of attacks in mobile ad hoc networks. In Proceedings of the 2017 International Conference on Engineering & MIS (ICEMIS) (pp. 1–7).