Kwang Hoe Kim | Analytical Chemistry | Best Researcher Award

Dr. Kwang Hoe Kim | Analytical Chemistry | Best Researcher Award

Cellkey Inc, South Korea

👨‍🎓Profile

🎓 Early Academic Pursuits

Dr. Kwang Hoe Kim’s academic journey began at Chungnam National University, South Korea, where he completed his Bachelor’s degree in Chemistry in March 2009. This foundational training in the sciences paved the way for his later research. In 2010, he advanced to the Graduate School of Analytical Science and Technology at the same institution, earning a Master’s degree (M.S.) in February 2012. Under the guidance of Professor Jong Shin Yoo, he developed key skills in mass spectrometry and glycoproteomics. He continued to build on this expertise, earning his Ph.D. in 2019, further honing his skills in mass spectrometry and biomarker discovery.

🧪 Professional Endeavors

Dr. Kim’s professional journey has been marked by his leadership in advancing the field of bioanalytical research, particularly in oncology. In January 2021, he took on the role of Head of the Bio R&D Center at CellKey, where he focuses on the development of diagnostic biomarkers for cancer detection and management. His work also includes advancing companion diagnostics in immuno-oncology, leveraging mass spectrometry for clinical applications. Prior to this, he worked as a Postdoctoral Researcher at the Korea Basic Science Institute, where he made significant contributions to the detection of hepatocellular carcinoma, a leading form of liver cancer.

🔬 Contributions and Research Focus

Dr. Kim’s research has been deeply focused on the application of mass spectrometry for cancer diagnosis and biomarker discovery. His work includes developing liquid chromatography-mass spectrometry-based methods to identify cancer-associated proteins and glycoproteins. At the Research Center for Bioconvergence Analysis, he worked on developing a multi-biomarker panel for hepatocellular carcinoma detection, using mass spectrometry to enhance diagnostic sensitivity. His work in optimizing immunoprecipitation/targeted mass spectrometry methods has made significant contributions to the analytical sensitivity of peptide and glycopeptide analyses.

🌍 Impact and Influence

Dr. Kim’s work has had a notable impact on both the scientific community and clinical applications. His research into mass spectrometry-based diagnostic methods has helped pave the way for more accurate and sensitive detection of cancer biomarkers, particularly in liver cancer. His development of multi-biomarker panels for cancer detection is a key step forward in precision medicine, which promises to enhance personalized treatment strategies for cancer patients. The clinical applications of his research in immuno-oncology also offer promise in the future of cancer care.

📚 Academic Citations

Dr. Kim’s research has earned recognition in the scientific community, with several published papers and citations highlighting his contributions to mass spectrometry and cancer biomarker research. His work on aberrant glycoproteins in colorectal cancer and hepatocellular carcinoma has been instrumental in advancing the understanding of cancer biomarkers, leading to increased citations in the fields of oncology and analytical chemistry.

🛠️ Technical Skills

Dr. Kim possesses a wide range of technical skills, particularly in the area of mass spectrometry. He is an expert in developing and applying various mass spectrometry techniques such as multiple reaction monitoring (MRM), parallel reaction monitoring (PRM), and high-resolution mass spectrometry using MALDI MS and FT-ICR. Additionally, he has extensive experience in protein quantification through immunoprecipitation and targeted mass spectrometry, particularly for low-abundance proteins. His technical expertise extends to the development of methods for high-throughput peptide and glycopeptide analysis.

👨‍🏫 Teaching Experience

Throughout his career, Dr. Kim has been actively involved in mentoring and educating the next generation of scientists. While pursuing his graduate studies, he worked as a research assistant and fellow, helping to guide students in laboratory techniques and research methodologies. His role as a leader in the Bio R&D Center at CellKey also involves sharing his expertise with younger researchers and fostering a collaborative environment for innovation in cancer diagnostics.

🌱 Legacy and Future Contributions

Looking to the future, Dr. Kim’s work promises to leave a lasting legacy in the fields of mass spectrometry and cancer diagnostics. His continued efforts to refine diagnostic biomarkers and improve detection methods are expected to contribute significantly to the fields of personalized medicine and immuno-oncology. As he expands his research into new areas, his contributions will likely inspire new diagnostic tools and clinical applications, shaping the future of cancer research and treatment.

🔮 Future Goals

Dr. Kim’s future goals include the further development of advanced diagnostics for early cancer detection and the continuous improvement of biomarker panels. With the evolving field of immuno-oncology, he plans to work on improving companion diagnostics, focusing on the use of mass spectrometry to assess tumor microenvironments and treatment responses. His dedication to advancing the science of cancer biomarkers positions him at the forefront of precision medicine, with the potential to greatly impact clinical practices.

📖Notable Publications

LC-MS/MS-Based Site-Specific N-Glycosylation Analysis of VEGFR-IgG Fusion Protein for Sialylation Assessment Across IEF Fractions
  • Authors: Kim, K. H., Ji, E. S., Lee, J. Y., Song, J. H., & Ahn, Y. H.
    Journal: Molecules
    Year: 2024
Measuring fucosylated alpha‐fetoprotein in hepatocellular carcinoma: A comparison of μTAS and parallel reaction monitoring
  • Authors: Kim, K. H., Lee, S. Y., Baek, J. H., Lee, S. Y., Kim, J. Y., & Yoo, J. S.
    Journal: PROTEOMICS–Clinical Applications
    Year: 2021
Absolute Quantification of N-Glycosylation of Alpha-Fetoprotein Using Parallel Reaction Monitoring with Stable Isotope-Labeled N-Glycopeptide as an Internal Standard
  • Authors: Kim, K. H., Lee, S. Y., Kim, D. G., Lee, S. Y., Kim, J. Y., & Yoo, J. S.
    Journal: Analytical Chemistry
    Year: 2020
BMDMSNP: A comprehensive ESI-MS/MS spectral library of natural compounds
  • Authors: Lee, S., Hwang, S., Seo, M., Shin, K. B., Kim, K. H., Park, G. W., & No, K. T.
    Journal: Phytochemistry
    Year: 2020
Mass spectrometry analysis of glycoprotein biomarkers in human blood of hepatocellular carcinoma
  • Authors: Kim, K. H., Kim, J. Y., & Yoo, J. S.
    Journal: Expert Review of Proteomics
    Year: 2019
Parallel reaction monitoring with multiplex immunoprecipitation of N-glycoproteins in human serum for detection of hepatocellular carcinoma
  • Authors: Kim, K. H., Park, G. W., Jeong, J. E., Ji, E. S., An, H. J., Kim, J. Y., & Yoo, J. S.
    Journal: Analytical and Bioanalytical Chemistry
    Year: 2019

Sicong Ma | Theoretical and Computational Chemistry | Best Researcher Award

Assoc. Prof. Dr. Sicong Ma | Theoretical and Computational Chemistry | Best Researcher Award

Shanghai Institute of Organic Chemistry, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Sicong Ma, born in March 1992, began his academic journey with a strong foundation in applied chemistry at the China University of Petroleum (Beijing), where he completed his Bachelor of Science in 2013. He continued at the same institution for a Master's degree in Chemistry, working under the guidance of Professor Zhen Zhao until 2016. His academic path led him to Fudan University, where he earned his Ph.D. in Physical Chemistry in 2019 under Professor Zhi-Pan Liu. Here, he developed his expertise in theoretical and computational chemistry, laying the groundwork for his future contributions to catalysis and machine learning.

🏢 Professional Endeavors

After completing his Ph.D., He joined Fudan University as a postdoctoral researcher, continuing his work with Professor Zhi-Pan Liu until 2021. In August 2021, he joined the Shanghai Institute of Organic Chemistry as an Assistant Researcher. Recently promoted to Associate Professor, He has led several projects funded by prestigious institutions, including the National Natural Science Excellent Youth Fund, Shanghai Municipal Science and Technology Commission, and the China Postdoctoral Fund.

🔍 Contributions and Research Focus

His research interests span a unique blend of machine learning and catalysis. His expertise extends across both homogeneous and heterogeneous catalysis, with a particular focus on: Machine Learning and Heterogeneous Catalysis: He has conducted research on syngas-to-olefins conversions on OX-ZEO catalysts, propane hydrogenation, and similar transformations, Machine Learning and Homogeneous Catalysis: His work includes studies on the carbonylation of olefins and the development of a metal-phosphine ligand catalyst database, Zeolite Chemistry: He is also active in studying the mechanisms of zeolite formation and their applications in catalysis, contributing significantly to zeolite-related database construction.

📈 Impact and Influence

He has made substantial contributions to the field, publishing more than 20 papers in renowned journals such as Nature Catalysis, Nature Communications, and ACS Catalysis. Notably, he has served as first or corresponding author on 15 of these publications, solidifying his role as a leader in his field. His work has garnered attention and citations, reflecting his influence within theoretical and computational chemistry.

📚 Academic Achievements and Honors

Recognized for his academic excellence, He has received numerous awards and honors. He was honored with the Excellent Doctoral Dissertation Award from Fudan University in 2019, recognized as an Academic Star of Fudan University the same year, and awarded a Shanghai Super Postdoctoral Fellowship. Recently, he was inducted as a member of the Youth Innovation Promotion Association by the Chinese Academy of Sciences in 2023.

🛠️ Technical Skills

His technical expertise includes advanced machine learning algorithms for catalysis, computational modeling in chemistry, and extensive knowledge of catalysis mechanisms in both homogeneous and heterogeneous systems. His computational skills and programming knowledge enable him to create and manage large databases, crucial for his projects on zeolite and catalyst-related data.

📖 Teaching and Mentoring Experience

While focused primarily on research, He has also contributed to the academic community by mentoring postdocs and junior researchers in his lab. His guidance fosters a collaborative environment, ensuring that emerging researchers develop the skills necessary to advance in computational chemistry and catalysis.

🌐 Legacy and Future Contributions

His ongoing work promises to deepen the integration of machine learning in catalysis, with potential implications for sustainable energy solutions and efficient industrial chemical processes. As a young innovator and leader in his field, he is set to make lasting contributions, furthering both academic knowledge and practical applications in computational chemistry.

📖Notable Publications