Dr. Zhu Jingwen | AI in Engineering | Best Researcher Award

Dr. Zhu Jingwen | AI in Engineering | Best Researcher Award

Dr. Zhu Jingwen | Jiangsu University | China

Dr. Zhu Jingwen is a researcher in control science and engineering whose work focuses on intelligent detection systems and advanced sensing technologies for agricultural safety. His research emphasizes the development of nondestructive testing methods for grains and edible oils through the integration of microwave, millimeter-wave, and near-infrared technologies with chemometric modeling and machine learning algorithms. Dr. Zhu has designed FPGA-based microwave detection systems capable of accurately identifying contaminants such as heavy metals and aflatoxins, contributing significantly to the field of food safety monitoring. His studies have been widely published in respected international journals, including Microchemical Journal, Sensors and Actuators A: Physical, and Spectrochimica Acta Part A. Beyond research, he has demonstrated leadership in innovation and entrepreneurship, leading projects recognized with national honors such as the China Postgraduate “Rural Revitalization – Sci-Tech Empowering Agriculture+” Competition. His scientific contributions are reflected through 13 published documents, cited 46 times by 41 other documents, demonstrating a growing academic impact and an h-index of 5. His efforts also led to the establishment of Dongfang Xiangyu (Jiangsu) Technology Co., Ltd., translating research outcomes into practical industrial applications. With a strong command of programming and embedded system development, Dr. Zhu continues to explore interdisciplinary approaches that merge intelligent algorithms with hardware systems to advance the precision and reliability of agricultural quality assessment technologies.

Profile: Scopus

Featured Publications

Zhu, J., Deng, J., Zhao, X., Xu, L., & Jiang, H. (2024). Quantitative determination of cadmium content in peanut oil using microwave detection method combined with multivariate analysis. Microchemical Journal, 110946.

Zhu, J., Deng, J., Zhao, X., Xu, L., & Jiang, H. (2024). Accurate identification of cadmium pollution in peanut oil using microwave technology combined with SVM-RFE. Sensors and Actuators A: Physical, 368, 115085.

Zhu, J., Chen, Y., Deng, J., & Jiang, H. (2024). Improving the accuracy of FT-NIR determination of zearalenone content in wheat using a characteristic wavelength optimization algorithm. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 313, 124169.

Ji, Z., Zhu, J., Deng, J., Jiang, H., & Chen, Q. (2024). Quantitative determination of zearalenone in wheat by the CSA-NIR technique combined with chemometric algorithms. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 323, 124858.

Zhu, J., Deng, J., Xu, L., & Jiang, H. (2024). Enhancing the performance of natural pigment sensor arrays for the detection of Procymidone residues in Allium tuberosum using outcome-corrected decision-making method. Journal of Food Composition and Analysis, 128, 107059.

Ms. Asima Sarwar | AI in Engineering | Best Researcher Award

Ms. Asima Sarwar | AI in Engineering | Best Researcher Award

Ms. Asima Sarwar | Ghulam Ishaq Khan Institute of Engineering Sciences and Technology | Pakistan

Ms. Asima Sarwar is a computer engineer and researcher with expertise in Artificial Intelligence, Data Engineering, and Machine Learning. She is pursuing a PhD in Computer Engineering with research focused on AI, data analytics, and distributed computing systems. Her academic background includes a master’s degree in Computer Systems Engineering, specializing in Smart Grids and the Internet of Things, and a bachelor’s degree in Electrical Engineering (Communication). She has professional experience as a computer engineer, research assistant, and lecturer, contributing to projects in secure IoT device development, cyber-secure systems, and AI-based data processing. Ms. Asima has taught various undergraduate and postgraduate courses including Big Data Analytics, Machine Learning, Generative AI, Operating Systems, and Ethical AI. Her work emphasizes technical innovation, algorithmic optimization, and the integration of intelligent systems for real-world applications. With strong analytical and problem-solving skills, she is actively involved in advancing research in AI-driven technologies, data engineering, and computer vision. Her contributions reflect a balance between academic rigor, applied research, and technological development aimed at improving system efficiency and advancing modern computing solutions.

Profile: Scopus

Featured Publications

  • Sarwar, A., Usman, M., Hussain, M., Jadoon, K. K., Manzoor, T., & Ali, S. (2025). AI-powered deep ultraviolet laser diode design for resource-efficient optimization. Journal of Computational Electronics, 24(4), 1–19.

  • Mahmood, M. A., Maab, I., Sibtain, M., Sarwar, A., Arsalan, M., & Hussain, M. (2025, March). Advancements in sentiment analysis: A methodological examination of news using multiple LLMs. In Proceedings of the 31st Annual Meeting of the Association for Natural Language Processing.

  • Sarwar, A., Khan, W. U., Marwat, S. N. K., & Ahmed, S. (2022). Enhanced anomaly detection system for IoT based on improved dynamic SBPSO. Sensors MDPI, 22(4926).

  • Sarwar, A., Hassan, S., Khan, W. U., Marwat, S. N. K., & Ahmed, S. (2022). Design of an advance intrusion detection system for IoT networks. In Proceedings of the 2nd International Conference on Artificial Intelligence (ICAI) (pp. 46–51).

  • Ijaz, A. Z., Ali, R. H., Sarwar, A., Khan, T. A., & Baig, M. M. (2022). Importance of synteny in homology inference. In Proceedings of the IEEE International Conference on Emerging Technologies (ICET).

  • Azam, T., Tahir, F. A., Sarwar, A., & Qayyum, M. A. (2023). A high gain wide band compact size dual band patch antenna for 5G application. In Proceedings of the IEEE International Conference on Emerging and Sustainable Technologies (ICEST) (pp. 1–3).