Assist. Prof. Dr. Monaem Elmnifi | Renewable Energy | Editorial Board Member

Assist. Prof. Dr. Monaem Elmnifi | Renewable Energy | Editorial Board Member

Assist. Prof. Dr. Monaem Elmnifi | Bright Star University | Libya

Assist. Prof. Dr.Monaem  Elmnifi is a dedicated mechanical engineering professional known for his strong expertise in renewable energy, heat transfer, materials science, and advanced manufacturing technologies. In his roles as Assistant and Associate Lecturer at the University of Benghazi, along with his academic contributions at Bright Star University, he has played a key part in teaching core mechanical engineering courses and guiding students toward practical, research-driven learning. His supervision of undergraduate projects demonstrates a clear focus on sustainable engineering solutions, including waste-to-energy conversion systems, solar-powered adsorption cooling technologies, and hybrid solar–wind energy generation tailored to regional needs. His academic influence is further evidenced by notable research metrics: Scopus records 261 citations by 204 documents, 40 indexed publications, and an h-index of 9. His ORCID profile lists 54 works, with 50 publicly visible. Google Scholar reflects a strong scholarly impact with 1,015 citations, an h-index of 19, and an i10-index of 29. These achievements highlight Mr. Monaem Hamad Elmnifi’s professional strength, his commitment to advancing mechanical engineering knowledge, and his growing contribution to sustainable energy research and engineering education.

Profiles: Scopus | Orcid | Google Scholar

Featured Publications

Nassar, Y. F., El-Khozondar, H. J., Khaleel, M. M., Ahmed, A. A., Alsharif, A. H., … Elmnifi, M. (2024). Design of reliable standalone utility-scale pumped hydroelectric storage powered by PV/Wind hybrid renewable system. Energy Conversion and Management, 322, 119173.

Khaleel, M., Nassar, Y., El-Khozondar, H. J., Elmnifi, M., Rajab, Z., Yaghoubi, E., … others. (2024). Electric vehicles in China, Europe, and the United States: Current trend and market comparison. International Journal of Electrical Engineering and Sustainability, 1–20.

Makhzom, A. M., Aissa, K. R., Alshanokie, A. A., Nassar, Y. F., El-Khozondar, H. J., … Elmnifi, M. (2023). Carbon dioxide life cycle assessment of the energy industry sector in Libya: A case study. International Journal of Electrical Engineering and Sustainability, 145–163.

Khaleel, M., Yusupov, Z., Alderoubi, N., Abdul_jabbar, R. L., Elmnifi, M., … others. (2024). Evolution of emissions: The role of clean energy in sustainable development. Challenges in Sustainability, 12(2), 122–135.

Jenkins, P., Elmnifi, M., Younis, A., & Emhamed, A. (2019). Hybrid power generation by using solar and wind energy: Case study. World Journal of Mechanics, 9(4), 81–93.

Nassar, Y., Irhouma, M., Salem, M., El-Khozondar, H., Suliman, S., Elmnifi, M., … others. (2025). Towards green economy: Case of electricity generation sector in Libya. Solar Energy and Sustainable Development Journal, 14(1), 334–360.

Moria, H., & Elmnifi, M. (2020). Feasibility study into possibility potentials and challenges of renewable energy in Libya. International Journal of Advanced Science and Technology, 29(3), 12546–12560.

Nassar, Y. F., El-Khozondar, H. J., Abouqeelah, M. H., Abubaker, A. A., Miskeen, A. B., … Elmnifi, M. (2023). Simulating the energy, economic and environmental performance of concentrating solar power technologies using SAM: Libya as a case study. Journal of Solar Energy and Sustainable Development, 12(2), 4–23.

Mr. Yohannes Shuka Jara | Renewable Energy | Best Researcher Award

Mr. Yohannes Shuka Jara | Renewable Energy | Best Researcher Award

Mr. Yohannes Shuka Jara | Borana University | Ethiopia

Mr. Yohannes Shuka Jara is a dedicated lecturer and researcher in the Department of Chemistry at Borana University, Ethiopia, with a strong academic and professional trajectory in physical chemistry and sustainable nanotechnology. Currently pursuing a PhD at the University of Messina, Italy, he holds an MSc in Physical Chemistry from Hawassa University and a BSc in Chemistry from Dilla University. His professional experience includes serving as Lecturer of Physical Chemistry at Borana University, Chief-in Laboratory Chemist, and Senior Lab Technical Assistant at Madda Walabu University, where he contributed significantly to research and laboratory management. His research primarily focuses on the green synthesis of nanoparticles and metal oxide semiconductors for sustainable applications, including green energy conversion, electrochemical and bio-nano sensors, catalysis design, and environmental remediation. Notable projects include biosynthesized N-Zn co-doped CuO nanoparticles for photocatalytic dye degradation, polyaniline-coated nanocomposites for enhanced microbial fuel cell efficiency, and activated carbon from Vernonia amygdalina for water purification. With 50 citations across 49 documents and an h-index of 2, Mr. Jara actively engages with the scientific community through platforms such as ORCID, ResearchGate, Scopus, and LinkedIn, demonstrating a strong commitment to advancing sustainable chemistry and nanotechnology solutions.

Profile: Scopus | Orcid

Featured Publications

Jara, Y. S., Mohammed, E. T., & Mekiso, T. T. (2025). Biosynthesized pure CuO, N-CuO, Zn-CuO, and N-Zn-CuO nanoparticles for photocatalytic activity: Enhanced optical properties through bandgap engineering. Next Materials.

Shuka, Y. (2025). Investigation of energy efficiency in a zeolite-water adsorption solar cooling system utilizing locally sourced materials for the conservation chamber. Physical Science International Journal.

Eyoel, T., Shuka, Y., Tadesse, S., Tesfaye, T., Mengesha, M., & Mert, S. O. (2025). Green energy: Power generation improvement in microbial fuel cells using bio-synthesized polyaniline-coated Co3O4 nanocomposite. International Journal of Energy Research.

Tesfaye, T., Shuka, Y., Tadesse, S., Eyoel, T., & Mengesha, M. (2025). Improving the power production efficiency of microbial fuel cell by using biosynthesized polyaniline-coated Fe3O4 as pencil graphite anode modifier. Scientific Reports.

Jara, Y. S., Mekiso, T. T., & Washe, A. P. (2024). Highly efficient catalytic degradation of organic dyes using iron nanoparticles synthesized with Vernonia amygdalina leaf extract. Scientific Reports.

Mengesha, M., Shuka, Y., Eyoel, T., & Tesfaye, T. (2024). Novel biomaterial-derived activated carbon from Lippia adoensis (Var. Koseret) leaf for efficient organic pollutant dye removal from water solution. American Journal of Applied Chemistry, 12(2), 11.

Jara, Y. S., & Gari, A. N. (2023). The impact of land use types on soil physicochemical properties and agricultural productivity: A case of Gojera Kebele, Dinsho District, South Eastern Ethiopia. Research Square.

Mr. Ivo Yotov | Renewable Energy | Best Researcher Award

Mr. Ivo Yotov | Renewable Energy | Best Researcher Award

Mr. Ivo Yotov | Technical University of Sofia | Bulgaria

Mr. Ivo Yotov Yotov is a highly skilled mechanical engineer with extensive experience in the space industry, automotive environmental testing, and heavy machinery maintenance. He is currently contributing to advanced satellite projects as an AIT Mechanical Engineer at Endurosat EAD, where he is involved in the precise assembly, integration, and testing of satellite systems. Previously, he worked as an Environmental Test Technician at Visteon Electronics Bulgaria, focusing on climatic and mechanical testing for automotive platforms, and as a Service Engineer at EUROMARKET Group, specializing in diagnostics, maintenance, and optimization of heavy machinery. His career is characterized by a strong focus on quality assurance, adherence to industry standards, and the application of innovative engineering solutions. With both advanced academic training and practical expertise, Ivo blends theoretical knowledge with hands-on problem-solving to deliver results in complex and technologically demanding environments.

Professional Profile 

Google Scholar | Scopus

Education and Experience

Mr. Ivo Yotov Yotov is pursuing a doctoral degree at the Technical University of Sofia in the field of Theory of Mechanisms, Machines, and Automatic Lines. His research examines the modelling and study of energy conversion systems based on shape memory alloys, supported by specialized studies in MEMS technology, mathematical modelling, and actuator design. He also holds a master’s degree in Mechanical Engineering from the same institution, specializing in Computer-aided Design and Manufacturing Technology. His thesis focused on the design and analysis of a bistable pump driven by shape memory alloys, incorporating an energy recovery system. His professional experience spans several engineering domains, including his current role as an AIT Mechanical Engineer in the space industry, previous work as an Environmental Test Technician in the automotive sector, and earlier service as a heavy machinery Service Engineer. This academic and professional blend gives him a solid foundation for tackling complex mechanical and technological challenges.

Summary Suitability

Mr. Ivo Yotov Yotov is an outstanding candidate for the Best Researcher Award, demonstrating a rare combination of academic depth, cross-industry engineering expertise, and impactful research in the field of applied mechanical and aerospace engineering. His work bridges theoretical innovation with practical application, particularly in the study and utilization of shape memory alloys for energy conversion, vibration harvesting, and high-reliability mechanical systems. With a strong foundation in satellite system integration, environmental testing for the automotive industry, and diagnostics for heavy machinery, Ivo has consistently applied rigorous methodologies to solve complex engineering problems. His academic research, supported by high-quality publications in peer-reviewed journals, reflects a commitment to advancing knowledge in smart material applications and energy systems.

Professional Development

Mr. Ivo Yotov Yotov’s professional development reflects a steady progression through increasingly sophisticated areas of engineering. His early work in heavy machinery diagnostics and maintenance allowed him to build a strong technical foundation in mechanical systems, safety, and reliability. Moving into the automotive sector, he advanced his skills in environmental testing, developing test programs, ensuring compliance with industry standards, and mastering the interpretation of performance data under various climatic and mechanical conditions. In the space industry, his focus has expanded to high-precision assembly and integration of satellite systems, combining advanced mechanical engineering with rigorous quality control and testing methodologies. Throughout his career, he has consistently sought opportunities to expand his technical expertise, deepen his understanding of innovative materials such as shape memory alloys, and apply modern design and manufacturing tools. His journey demonstrates adaptability, commitment to excellence, and the ability to integrate theoretical and practical knowledge in cutting-edge engineering projects.

Research Focus

Mr. Ivo Yotov Yotov’s research and technical work align with the category of Applied Mechanical and Aerospace Engineering, with a particular emphasis on smart materials and precision systems. His doctoral studies investigate energy conversion systems based on shape memory alloys, exploring their potential in actuation, energy recovery, and absorption technologies. His expertise extends to MEMS-based applications, mathematical modelling, and the design of systems capable of performing reliably in challenging operational environments. In his current space industry role, he applies these principles to satellite integration and testing, ensuring structural, mechanical, and functional integrity. His background in automotive environmental testing also supports research into material durability, system resilience, and performance optimization under extreme climatic and mechanical stress. This combination of academic inquiry and industrial application positions him to contribute to advancements in smart material utilization, satellite technology, and high-reliability engineering systems.

Awards and Honors

Mr. Ivo Yotov Yotov has been recognized for his professional excellence through respected certifications, specialized training, and impactful contributions to engineering research and practice. He holds internationally acknowledged certifications in ISO/IEC standards, demonstrating a strong commitment to quality management, laboratory competence, and adherence to globally accepted engineering requirements. Throughout his career, he has been trusted to lead maintenance and repair teams for high-priority projects in the aerospace, automotive, and heavy machinery sectors. His reputation for delivering results under challenging conditions is matched by his ability to integrate leadership, technical precision, and innovative problem-solving. Proficiency in advanced engineering software, including SolidWorks, Comsol, Ansys, and PTC Creo, further enhances his capacity to create and implement effective solutions. These honors reflect his dedication to advancing engineering practices, maintaining professional integrity, and contributing to projects with lasting technical and industrial impact.

Publication Top Notes

  • Title: Study of Self-Excited Thermomechanical Oscillator with Shape Memory Alloys
    Year: 2024
    Citation: 4

  • Title: Dynamics of a Self-Excited Vibrating Thermal Energy Harvester with Shape Memory Alloys and PVDF Cantilevers
    Year: 2024
    Citation: 3

  • Title: Magnetic Frequency Tuning of a Shape Memory Alloy Thermoelectric Vibration Energy Harvester
    Year: 2025

Conclusion

Mr. Ivo Yotov Yotov stands out as an exceptional researcher whose academic achievements, innovative contributions, and practical engineering applications position him as a leading figure in his field. His commitment to advancing knowledge, coupled with his ability to translate research into real-world technological solutions, makes him highly deserving of the Best Researcher Award.